Identification of Predictors of Mood Disorder Misdiagnosis and Subsequent Help-Seeking Behavior in Individuals With Depressive Symptoms: Gradient-Boosted Tree Machine Learning Approach (Preprint)

Author:

Benacek JiriORCID,Lawal NimotalaiORCID,Ong TommyORCID,Tomasik JakubORCID,Martin-Key Nayra AORCID,Funnell Erin LORCID,Barton-Owen GilesORCID,Olmert TonyORCID,Cowell DanORCID,Bahn SabineORCID

Abstract

BACKGROUND

Misdiagnosis and delayed help-seeking cause significant burden for individuals with mood disorders such as major depressive disorder and bipolar disorder. Misdiagnosis can lead to inappropriate treatment, while delayed help-seeking can result in more severe symptoms, functional impairment, and poor treatment response. Such challenges are common in individuals with major depressive disorder and bipolar disorder due to the overlap of symptoms with other mental and physical health conditions, as well as, stigma and insufficient understanding of these disorders.

OBJECTIVE

In this study, we aimed to identify factors that may contribute to mood disorder misdiagnosis and delayed help-seeking.

METHODS

Participants with current depressive symptoms were recruited online and data were collected using an extensive digital mental health questionnaire, with the World Health Organization World Mental Health Composite International Diagnostic Interview delivered via telephone. A series of predictive gradient-boosted tree algorithms were trained and validated to identify the most important predictors of misdiagnosis and subsequent help-seeking in misdiagnosed individuals.

RESULTS

The analysis included data from 924 symptomatic individuals for predicting misdiagnosis and from a subset of 379 misdiagnosed participants who provided follow-up information when predicting help-seeking. Models achieved good predictive power, with area under the receiver operating characteristic curve of 0.75 and 0.71 for misdiagnosis and help-seeking, respectively. The most predictive features with respect to misdiagnosis were high severity of depressed mood, instability of self-image, the involvement of a psychiatrist in diagnosing depression, higher age at depression diagnosis, and reckless spending. Regarding help-seeking behavior, the strongest predictors included shorter time elapsed since last speaking to a general practitioner about mental health, sleep problems disrupting daily tasks, taking antidepressant medication, and being diagnosed with depression at younger ages.

CONCLUSIONS

This study provides a novel, machine learning–based approach to understand the interplay of factors that may contribute to the misdiagnosis and subsequent help-seeking in patients experiencing low mood. The present findings can inform the development of targeted interventions to improve early detection and appropriate treatment of individuals with mood disorders.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3