Artificial Intelligence in Diagnosis and Prediction of the Multiple Sclerosis Progression: A Scoping Review (Preprint)

Author:

Saad Ghassan,Jaber Bassam,Al-Hajri Maryam,Househ MowafaORCID,Ahmed Arfan,Abd-Alrazaq Alaa

Abstract

BACKGROUND

Multiple Sclerosis (MS) is an autoimmune disease that results from the demyelination of the nerves in the Central Nervous System. The diagnosis depends on clinical history, neurological examination, and radiological images. Artificial Intelligence proved to be an effective tool in enhancing the diagnostic tools of MS.

OBJECTIVE

To explore how AI assisted in diagnosis and predicting the progression of MS.

METHODS

We used three bibliographic databases in our search: PubMed IEEE Xplore and Cochrane in our search. The study selection process included: removal of duplicated articles, screening titles and abstracts, and reading the full text. This process was performed by two reviewers. The data extracted from the included studies have been filled in an Excel sheet. This step had been done by each reviewer accordingly to the assigned articles. The extracted data sheet was checked by two reviewers to have accuracy ensured. The narrative approach is applied in data synthesis.

RESULTS

The search conducted resulted in 320 articles Removing duplicates and excluding the ineligible articles due to irrelevancy to the population, intervention, and outcomes resulted in excluding 299 articles. Thus, our review will include 21 articles for data extraction and data synthesis.

CONCLUSIONS

Artificial Intelligence is becoming a trend in the medical field. Its contribution in enhancing the diagnostic tools of many diseases, as in MS, is prominent and can be built on in further development plans. However, the implementation of Artificial Intelligence in Multiple Sclerosis is not widespread to confirm the benefits gained, and the datasets involved in the current practice are relatively small. It is recommended to have more studies that focus on the relationship between the employment of AI in diagnosis and monitoring progression and the accuracy gained by this employment.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3