BACKGROUND
Multiple Sclerosis (MS) is an autoimmune disease that results from the demyelination of the nerves in the Central Nervous System. The diagnosis depends on clinical history, neurological examination, and radiological images. Artificial Intelligence proved to be an effective tool in enhancing the diagnostic tools of MS.
OBJECTIVE
To explore how AI assisted in diagnosis and predicting the progression of MS.
METHODS
We used three bibliographic databases in our search: PubMed IEEE Xplore and Cochrane in our search. The study selection process included: removal of duplicated articles, screening titles and abstracts, and reading the full text. This process was performed by two reviewers. The data extracted from the included studies have been filled in an Excel sheet. This step had been done by each reviewer accordingly to the assigned articles. The extracted data sheet was checked by two reviewers to have accuracy ensured. The narrative approach is applied in data synthesis.
RESULTS
The search conducted resulted in 320 articles Removing duplicates and excluding the ineligible articles due to irrelevancy to the population, intervention, and outcomes resulted in excluding 299 articles. Thus, our review will include 21 articles for data extraction and data synthesis.
CONCLUSIONS
Artificial Intelligence is becoming a trend in the medical field. Its contribution in enhancing the diagnostic tools of many diseases, as in MS, is prominent and can be built on in further development plans. However, the implementation of Artificial Intelligence in Multiple Sclerosis is not widespread to confirm the benefits gained, and the datasets involved in the current practice are relatively small. It is recommended to have more studies that focus on the relationship between the employment of AI in diagnosis and monitoring progression and the accuracy gained by this employment.