An “All-Data-on-Hand” Deep Learning Model to Predict Hospitalization for Diabetic Ketoacidosis in Youth With Type 1 Diabetes: Development and Validation Study (Preprint)

Author:

Williams David DORCID,Ferro DianaORCID,Mullaney ColinORCID,Skrabonja LydiaORCID,Barnes Mitchell SORCID,Patton Susana RORCID,Lockee BrentORCID,Tallon Erin MORCID,Vandervelden Craig AORCID,Schweisberger CintyaORCID,Mehta SanjeevORCID,McDonough RyanORCID,Lind MarcusORCID,D'Avolio LeonardORCID,Clements Mark AORCID

Abstract

BACKGROUND

Although prior research has identified multiple risk factors for diabetic ketoacidosis (DKA), clinicians continue to lack clinic-ready models to predict dangerous and costly episodes of DKA. We asked whether we could apply deep learning, specifically the use of a long short-term memory (LSTM) model, to accurately predict the 180-day risk of DKA-related hospitalization for youth with type 1 diabetes (T1D).

OBJECTIVE

We aimed to describe the development of an LSTM model to predict the 180-day risk of DKA-related hospitalization for youth with T1D.

METHODS

We used 17 consecutive calendar quarters of clinical data (January 10, 2016, to March 18, 2020) for 1745 youths aged 8 to 18 years with T1D from a pediatric diabetes clinic network in the Midwestern United States. The input data included demographics, discrete clinical observations (laboratory results, vital signs, anthropometric measures, diagnosis, and procedure codes), medications, visit counts by type of encounter, number of historic DKA episodes, number of days since last DKA admission, patient-reported outcomes (answers to clinic intake questions), and data features derived from diabetes- and nondiabetes-related clinical notes via natural language processing. We trained the model using input data from quarters 1 to 7 (n=1377), validated it using input from quarters 3 to 9 in a partial out-of-sample (OOS-P; n=1505) cohort, and further validated it in a full out-of-sample (OOS-F; n=354) cohort with input from quarters 10 to 15.

RESULTS

DKA admissions occurred at a rate of 5% per 180-days in both out-of-sample cohorts. In the OOS-P and OOS-F cohorts, the median age was 13.7 (IQR 11.3-15.8) years and 13.1 (IQR 10.7-15.5) years; median glycated hemoglobin levels at enrollment were 8.6% (IQR 7.6%-9.8%) and 8.1% (IQR 6.9%-9.5%); recall was 33% (26/80) and 50% (9/18) for the top-ranked 5% of youth with T1D; and 14.15% (213/1505) and 12.7% (45/354) had prior DKA admissions (after the T1D diagnosis), respectively. For lists rank ordered by the probability of hospitalization, precision increased from 33% to 56% to 100% for positions 1 to 80, 1 to 25, and 1 to 10 in the OOS-P cohort and from 50% to 60% to 80% for positions 1 to 18, 1 to 10, and 1 to 5 in the OOS-F cohort, respectively.

CONCLUSIONS

The proposed LSTM model for predicting 180-day DKA-related hospitalization was valid in this sample. Future research should evaluate model validity in multiple populations and settings to account for health inequities that may be present in different segments of the population (eg, racially or socioeconomically diverse cohorts). Rank ordering youth by probability of DKA-related hospitalization will allow clinics to identify the most at-risk youth. The clinical implication of this is that clinics may then create and evaluate novel preventive interventions based on available resources.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3