BACKGROUND
This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions.
OBJECTIVE
We hypothesized that the app-based measurement may provide more comprehensive information, including light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators.
METHODS
We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33 controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for physical activity level, age, and gender.
RESULTS
Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time (TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative correlation between BMI and app-measured IS (<i>P</i>=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT) showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI, VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%.
CONCLUSIONS
Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.