Visualizing Knowledge Evolution Trends and Research Hotspots of Personal Health Data Research: Bibliometric Analysis (Preprint)

Author:

Gong JianxiaORCID,Sihag VikrantORCID,Kong QingxiaORCID,Zhao LinduORCID

Abstract

BACKGROUND

The recent surge in clinical and nonclinical health-related data has been accompanied by a concomitant increase in personal health data (PHD) research across multiple disciplines such as medicine, computer science, and management. There is now a need to synthesize the dynamic knowledge of PHD in various disciplines to spot potential research hotspots.

OBJECTIVE

The aim of this study was to reveal the knowledge evolutionary trends in PHD and detect potential research hotspots using bibliometric analysis.

METHODS

We collected 8281 articles published between 2009 and 2018 from the Web of Science database. The knowledge evolution analysis (KEA) framework was used to analyze the evolution of PHD research. The KEA framework is a bibliometric approach that is based on 3 knowledge networks: reference co-citation, keyword co-occurrence, and discipline co-occurrence.

RESULTS

The findings show that the focus of PHD research has evolved from medicine centric to technology centric to human centric since 2009. The most active PHD knowledge cluster is developing knowledge resources and allocating scarce resources. The field of computer science, especially the topic of artificial intelligence (AI), has been the focal point of recent empirical studies on PHD. Topics related to psychology and human factors (eg, attitude, satisfaction, education) are also receiving more attention.

CONCLUSIONS

Our analysis shows that PHD research has the potential to provide value-based health care in the future. All stakeholders should be educated about AI technology to promote value generation through PHD. Moreover, technology developers and health care institutions should consider human factors to facilitate the effective adoption of PHD-related technology. These findings indicate opportunities for interdisciplinary cooperation in several PHD research areas: (1) AI applications for PHD; (2) regulatory issues and governance of PHD; (3) education of all stakeholders about AI technology; and (4) value-based health care including “allocative value,” “technology value,” and “personalized value.”

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3