Skin Cancer Classification Using Convolutional Neural Networks with Integrated Patient Data: A Systematic Review (Preprint)

Author:

Höhn JuliaORCID,Hekler AchimORCID,Krieghoff-Henning EvaORCID,Kather Jakob NikolasORCID,Utikal Jochen SvenORCID,Meier FriedegundORCID,Gellrich Frank FriedrichORCID,Hauschild AxelORCID,French LarsORCID,Schlager Justin GabrielORCID,Ghoreschi KamranORCID,Wilhelm TabeaORCID,Kutzner HeinzORCID,Heppt MarkusORCID,Haferkamp SebastianORCID,Sondermann WiebkeORCID,Schadendorf DirkORCID,Schilling BastianORCID,Maron Roman C.ORCID,Schmitt MaxORCID,Jutzi TanjaORCID,Fröhling StefanORCID,Lipka Daniel B.ORCID,Brinker Titus JosefORCID

Abstract

BACKGROUND

In the past years, accuracy of skin cancer classification by convolutional neural networks (CNNs) has improved substantially. On classification tasks of single images, CNNs have performed on par or better than dermatologists. However, in clinical practice dermatologists also use other patient data beyond the visual aspects present in a digitized image which increases their diagnostic accuracy. The effect of integration of different subtypes of patient data into CNN-based skin cancer classifiers was recently investigated in several pilot studies.

OBJECTIVE

This systematic review focuses on current research investigating the impact of merging information from image features and patient data on the performance of CNN-based skin cancer image classification. The aim is to explore the potential in this field of research by evaluating the type of patient data used, the ways the non-image data is encoded and merged with the image features as well as the impact of the integration for the classifier performance.

METHODS

Google Scholar, PubMed, Medline and ScienceDirect were screened for peer-reviewed studies published in English dealing with the integration of patient data within a CNN-based skin cancer classification. The search terms skin cancer classification, convolutional neural network(s), deep learning, lesions, melanoma, metadata, clinical information and patient data were combined.

RESULTS

A total of 11 publications fulfilled the inclusion criteria. All of them reported an overall improvement in different skin lesion classification tasks with patient data integration. The most commonly used patient data were age, sex and lesion location. Patient data was mostly one-hot encoded. Differences occur in the complexity that the encoded patient data was processed with regarding deep learning methods before and after fusing it with the image features for a ‘combined classifier’.

CONCLUSIONS

The present studies indicate a potential benefit of patient data integration into CNN-based diagnostic algorithms. However, how exactly the individual patient data enhances classification performance, especially in case of multiclass classification problems, is still unclear. Moreover, a substantial fraction of patient data used by dermatologists remains to be analyzed in the context of CNN-based skin cancer classification. Further exploratory analyses in this promising field may optimize patient data integration into CNN-based skin cancer diagnostics for the benefit of the patient.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3