Identification of Motor Symptoms Related to Parkinson Disease Using Motion-Tracking Sensors at Home (KÄVELI): Protocol for an Observational Case-Control Study (Preprint)

Author:

Jauhiainen MillaORCID,Puustinen JuhaORCID,Mehrang SaeedORCID,Ruokolainen JariORCID,Holm AnuORCID,Vehkaoja AnttiORCID,Nieminen HannuORCID

Abstract

BACKGROUND

Clinical characterization of motion in patients with Parkinson disease (PD) is challenging: symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments.

OBJECTIVE

The primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns.

METHODS

This paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings.

RESULTS

Data collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD.

CONCLUSIONS

This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life and outside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.

CLINICALTRIAL

ClinicalTrials.gov NCT03366558; https://clinicaltrials.gov/ct2/show/NCT03366558 

INTERNATIONAL REGISTERED REPOR

DERR1-10.2196/12808

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3