Developing a Framework to Infer Opioid Use Disorder Severity From Clinical Notes to Inform Natural Language Processing Methods: Characterization Study (Preprint)

Author:

Poulsen Melissa NORCID,Freda Philip JORCID,Troiani VanessaORCID,Mowery Danielle LORCID

Abstract

BACKGROUND

Information regarding opioid use disorder (OUD) status and severity is important for patient care. Clinical notes provide valuable information for detecting and characterizing problematic opioid use, necessitating development of natural language processing (NLP) tools, which in turn requires reliably labeled OUD-relevant text and understanding of documentation patterns.

OBJECTIVE

To inform automated NLP methods, we aimed to develop and evaluate an annotation schema for characterizing OUD and its severity, and to document patterns of OUD-relevant information within clinical notes of heterogeneous patient cohorts.

METHODS

We developed an annotation schema to characterize OUD severity based on criteria from the <i>Diagnostic and Statistical Manual of Mental Disorders, 5th edition</i>. In total, 2 annotators reviewed clinical notes from key encounters of 100 adult patients with varied evidence of OUD, including patients with and those without chronic pain, with and without medication treatment for OUD, and a control group. We completed annotations at the sentence level. We calculated severity scores based on annotation of note text with 18 classes aligned with criteria for OUD severity and determined positive predictive values for OUD severity.

RESULTS

The annotation schema contained 27 classes. We annotated 1436 sentences from 82 patients; notes of 18 patients (11 of whom were controls) contained no relevant information. Interannotator agreement was above 70% for 11 of 15 batches of reviewed notes. Severity scores for control group patients were all 0. Among noncontrol patients, the mean severity score was 5.1 (SD 3.2), indicating moderate OUD, and the positive predictive value for detecting moderate or severe OUD was 0.71. Progress notes and notes from emergency department and outpatient settings contained the most and greatest diversity of information. Substance misuse and psychiatric classes were most prevalent and highly correlated across note types with high co-occurrence across patients.

CONCLUSIONS

Implementation of the annotation schema demonstrated strong potential for inferring OUD severity based on key information in a small set of clinical notes and highlighting where such information is documented. These advancements will facilitate NLP tool development to improve OUD prevention, diagnosis, and treatment.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3