Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning (Preprint)

Author:

Pičulin MatejORCID,Smole TimORCID,Žunkovič BojanORCID,Kokalj EnjaORCID,Robnik-Šikonja MarkoORCID,Kukar MatjažORCID,Fotiadis Dimitrios IORCID,Pezoulas Vasileios CORCID,Tachos Nikolaos SORCID,Barlocco FaustoORCID,Mazzarotto FrancescoORCID,Popović DejanaORCID,Maier Lars SORCID,Velicki LazarORCID,Olivotto IacopoORCID,MacGowan Guy AORCID,Jakovljević Djordje GORCID,Filipović NenadORCID,Bosnić ZoranORCID

Abstract

BACKGROUND

Cardiovascular disorders in general are responsible for 30% of deaths worldwide. Among them, hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease that is present in about 1 of 500 young adults and can cause sudden cardiac death (SCD).

OBJECTIVE

Although the current state-of-the-art methods model the risk of SCD for patients, to the best of our knowledge, no methods are available for modeling the patient's clinical status up to 10 years ahead. In this paper, we propose a novel machine learning (ML)-based tool for predicting disease progression for patients diagnosed with HCM in terms of adverse remodeling of the heart during a 10-year period.

METHODS

The method consisted of 6 predictive regression models that independently predict future values of 6 clinical characteristics: left atrial size, left atrial volume, left ventricular ejection fraction, New York Heart Association functional classification, left ventricular internal diastolic diameter, and left ventricular internal systolic diameter. We supplemented each prediction with the explanation that is generated using the Shapley additive explanation method.

RESULTS

The final experiments showed that predictive error is lower on 5 of the 6 constructed models in comparison to experts (on average, by 0.34) or a consortium of experts (on average, by 0.22). The experiments revealed that semisupervised learning and the artificial data from virtual patients help improve predictive accuracies. The best-performing random forest model improved R<sup>2</sup> from 0.3 to 0.6.

CONCLUSIONS

By engaging medical experts to provide interpretation and validation of the results, we determined the models' favorable performance compared to the performance of experts for 5 of 6 targets.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3