BACKGROUND
The self-monitoring of physical activity is an effective strategy for promoting active lifestyles. However, accurately assessing physical activity remains challenging in certain situations. This study evaluates a novel floor-vibration monitoring system to quantify housework-related physical activity.
OBJECTIVE
This study aims to assess the validity of step-count and physical behavior intensity predictions of a novel floor-vibration monitoring system in comparison with the actual number of steps and indirect calorimetry measurements. The accuracy of the predictions is also compared with that of research-grade devices (ActiGraph GT9X).
METHODS
The Ocha-House, located in Tokyo, serves as an independent experimental facility equipped with high-sensitivity accelerometers installed on the floor to monitor vibrations. Dedicated data processing software was developed to analyze floor-vibration signals and calculate 3 quantitative indices: floor-vibration quantity, step count, and moving distance. In total, 10 participants performed 4 different housework-related activities, wearing ActiGraph GT9X monitors on both the waist and wrist for 6 minutes each. Concurrently, floor-vibration data were collected, and the energy expenditure was measured using the Douglas bag method to determine the actual intensity of activities.
RESULTS
Significant correlations (<i>P</i><.001) were found between the quantity of floor vibrations, the estimated step count, the estimated moving distance, and the actual activity intensities. The step-count parameter extracted from the floor-vibration signal emerged as the most robust predictor (<i>r</i><sup>2</sup>=0.82; <i>P</i><.001). Multiple regression models incorporating several floor-vibration–extracted parameters showed a strong association with actual activity intensities (<i>r</i><sup>2</sup>=0.88; <i>P</i><.001). Both the step-count and intensity predictions made by the floor-vibration monitoring system exhibited greater accuracy than those of the ActiGraph monitor.
CONCLUSIONS
Floor-vibration monitoring systems seem able to produce valid quantitative assessments of physical activity for selected housework-related activities. In the future, connected smart home systems that integrate this type of technology could be used to perform continuous and accurate evaluations of physical behaviors throughout the day.