YouTube Video Comments on Healthy Eating: Descriptive and Predictive Analysis (Preprint)

Author:

Teng ShashaORCID,Khong Kok WeiORCID,Pahlevan Sharif SaeedORCID,Ahmed AmrORCID

Abstract

BACKGROUND

Poor nutrition and food selection lead to health issues such as obesity, cardiovascular disease, diabetes, and cancer. This study of YouTube comments aims to uncover patterns of food choices and the factors driving them, in addition to exploring the sentiments of healthy eating in networked communities.

OBJECTIVE

The objectives of the study are to explore the determinants, motives, and barriers to healthy eating behaviors in online communities and provide insight into YouTube video commenters’ perceptions and sentiments of healthy eating through text mining techniques.

METHODS

This paper applied text mining techniques to identify and categorize meaningful healthy eating determinants. These determinants were then incorporated into hypothetically defined constructs that reflect their thematic and sentimental nature in order to test our proposed model using a variance-based structural equation modeling procedure.

RESULTS

With a dataset of 4654 comments extracted from YouTube videos in the context of Malaysia, we apply a text mining method to analyze the perceptions and behavior of healthy eating. There were 10 clusters identified with regard to food ingredients, food price, food choice, food portion, well-being, cooking, and culture in the concept of healthy eating. The structural equation modeling results show that clusters are positively associated with healthy eating with all <i>P</i> values less than .001, indicating a statistical significance of the study results. People hold complex and multifaceted beliefs about healthy eating in the context of YouTube videos. Fruits and vegetables are the epitome of healthy foods. Despite having a favorable perception of healthy eating, people may not purchase commonly recognized healthy food if it has a premium price. People associate healthy eating with weight concerns. Food taste, variety, and availability are identified as reasons why Malaysians cannot act on eating healthily.

CONCLUSIONS

This study offers significant value to the existing literature of health-related studies by investigating the rich and diverse social media data gleaned from YouTube. This research integrated text mining analytics with predictive modeling techniques to identify thematic constructs and analyze the sentiments of healthy eating.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3