Comparing News Articles and Tweets About COVID-19 in Brazil: Sentiment Analysis and Topic Modeling Approach (Preprint)

Author:

de Melo TiagoORCID,Figueiredo Carlos M SORCID

Abstract

BACKGROUND

The COVID-19 pandemic is severely affecting people worldwide. Currently, an important approach to understand this phenomenon and its impact on the lives of people consists of monitoring social networks and news on the internet.

OBJECTIVE

The purpose of this study is to present a methodology to capture the main subjects and themes under discussion in news media and social media and to apply this methodology to analyze the impact of the COVID-19 pandemic in Brazil.

METHODS

This work proposes a methodology based on topic modeling, namely entity recognition, and sentiment analysis of texts to compare Twitter posts and news, followed by visualization of the evolution and impact of the COVID-19 pandemic. We focused our analysis on Brazil, an important epicenter of the pandemic; therefore, we faced the challenge of addressing Brazilian Portuguese texts.

RESULTS

In this work, we collected and analyzed 18,413 articles from news media and 1,597,934 tweets posted by 1,299,084 users in Brazil. The results show that the proposed methodology improved the topic sentiment analysis over time, enabling better monitoring of internet media. Additionally, with this tool, we extracted some interesting insights about the evolution of the COVID-19 pandemic in Brazil. For instance, we found that Twitter presented similar topic coverage to news media; the main entities were similar, but they differed in theme distribution and entity diversity. Moreover, some aspects represented negative sentiment toward political themes in both media, and a high incidence of mentions of a specific drug denoted high political polarization during the pandemic.

CONCLUSIONS

This study identified the main themes under discussion in both news and social media and how their sentiments evolved over time. It is possible to understand the major concerns of the public during the pandemic, and all the obtained information is thus useful for decision-making by authorities.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3