Enabling Wearable Pulse Transit Time-Based Blood Pressure Estimation for Medically Underserved Areas and Health Equity: Comprehensive Evaluation Study (Preprint)

Author:

Ganti VenuORCID,Carek Andrew MORCID,Jung HewonORCID,Srivatsa Adith VORCID,Cherry DeborahORCID,Johnson Levather NeiceyORCID,Inan Omer TORCID

Abstract

BACKGROUND

Noninvasive and cuffless approaches to monitor blood pressure (BP), in light of their convenience and accuracy, have paved the way toward remote screening and management of hypertension. However, existing noninvasive methodologies, which operate on mechanical, electrical, and optical sensing modalities, have not been thoroughly evaluated in demographically and racially diverse populations. Thus, the potential accuracy of these technologies in populations where they could have the greatest impact has not been sufficiently addressed. This presents challenges in clinical translation due to concerns about perpetuating existing health disparities.

OBJECTIVE

In this paper, we aim to present findings on the feasibility of a cuffless, wrist-worn, pulse transit time (PTT)–based device for monitoring BP in a diverse population.

METHODS

We recruited a diverse population through a collaborative effort with a nonprofit organization working with medically underserved areas in Georgia. We used our custom, multimodal, wrist-worn device to measure the PTT through seismocardiography, as the proximal timing reference, and photoplethysmography, as the distal timing reference. In addition, we created a novel data-driven beat-selection algorithm to reduce noise and improve the robustness of the method. We compared the wearable PTT measurements with those from a finger-cuff continuous BP device over the course of several perturbations used to modulate BP.

RESULTS

Our PTT-based wrist-worn device accurately monitored diastolic blood pressure (DBP) and mean arterial pressure (MAP) in a diverse population (N=44 participants) with a mean absolute difference of 2.90 mm Hg and 3.39 mm Hg for DBP and MAP, respectively, after calibration. Meanwhile, the mean absolute difference of our systolic BP estimation was 5.36 mm Hg, a grade B classification based on the Institute for Electronics and Electrical Engineers standard. We have further demonstrated the ability of our device to capture the commonly observed demographic differences in underlying arterial stiffness.

CONCLUSIONS

Accurate DBP and MAP estimation, along with grade B systolic BP estimation, using a convenient wearable device can empower users and facilitate remote BP monitoring in medically underserved areas, thus providing widespread hypertension screening and management for health equity.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3