Models Predicting Hospital Admission of Adult Patients Utilizing Prehospital Data: Systematic Review Using PROBAST and CHARMS (Preprint)

Author:

Monahan Ann CorneilleORCID,Feldman Sue SORCID

Abstract

BACKGROUND

Emergency department boarding and hospital exit block are primary causes of emergency department crowding and have been conclusively associated with poor patient outcomes and major threats to patient safety. Boarding occurs when a patient is delayed or blocked from transitioning out of the emergency department because of dysfunctional transition or bed assignment processes. Predictive models for estimating the probability of an occurrence of this type could be useful in reducing or preventing emergency department boarding and hospital exit block, to reduce emergency department crowding.

OBJECTIVE

The aim of this study was to identify and appraise the predictive performance, predictor utility, model application, and model utility of hospital admission prediction models that utilized prehospital, adult patient data and aimed to address emergency department crowding.

METHODS

We searched multiple databases for studies, from inception to September 30, 2019, that evaluated models predicting adult patients’ imminent hospital admission, with prehospital patient data and regression analysis. We used PROBAST (Prediction Model Risk of Bias Assessment Tool) and CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) to critically assess studies.

RESULTS

Potential biases were found in most studies, which suggested that each model’s predictive performance required further investigation. We found that select prehospital patient data contribute to the identification of patients requiring hospital admission. Biomarker predictors may add superior value and advantages to models. It is, however, important to note that no models had been integrated with an information system or workflow, operated independently as electronic devices, or operated in real time within the care environment. Several models could be used at the site-of-care in real time without digital devices, which would make them suitable for low-technology or no-electricity environments.

CONCLUSIONS

There is incredible potential for prehospital admission prediction models to improve patient care and hospital operations. Patient data can be utilized to act as predictors and as data-driven, actionable tools to identify patients likely to require imminent hospital admission and reduce patient boarding and crowding in emergency departments. Prediction models can be used to justify earlier patient admission and care, to lower morbidity and mortality, and models that utilize biomarker predictors offer additional advantages.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3