Hypoglycemia Detection Using Hand Tremors: Home Study of Patients With Type 1 Diabetes (Preprint)

Author:

Jahromi RezaORCID,Zahed KarimORCID,Sasangohar FarzanORCID,Erraguntla MadhavORCID,Mehta RanjanaORCID,Qaraqe KhalidORCID

Abstract

BACKGROUND

Diabetes affects millions of people worldwide and is steadily increasing. A serious condition associated with diabetes is low glucose levels (hypoglycemia). Monitoring blood glucose is usually performed by invasive methods or intrusive devices, and these devices are currently not available to all patients with diabetes. Hand tremor is a significant symptom of hypoglycemia, as nerves and muscles are powered by blood sugar. However, to our knowledge, no validated tools or algorithms exist to monitor and detect hypoglycemic events via hand tremors.

OBJECTIVE

In this paper, we propose a noninvasive method to detect hypoglycemic events based on hand tremors using accelerometer data.

METHODS

We analyzed triaxial accelerometer data from a smart watch recorded from 33 patients with type 1 diabetes for 1 month. Time and frequency domain features were extracted from acceleration signals to explore different machine learning models to classify and differentiate between hypoglycemic and nonhypoglycemic states.

RESULTS

The mean duration of the hypoglycemic state was 27.31 (SD 5.15) minutes per day for each patient. On average, patients had 1.06 (SD 0.77) hypoglycemic events per day. The ensemble learning model based on random forest, support vector machines, and k-nearest neighbors had the best performance, with a precision of 81.5% and a recall of 78.6%. The results were validated using continuous glucose monitor readings as ground truth.

CONCLUSIONS

Our results indicate that the proposed approach can be a potential tool to detect hypoglycemia and can serve as a proactive, nonintrusive alert mechanism for hypoglycemic events.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3