A Semantic Relatedness Model for the Automatic Cluster Analysis of Phonematic and Semantic Verbal Fluency Tasks Performed by People With Parkinson Disease: Prospective Multicenter Study (Preprint)

Author:

Hähnel TomORCID,Feige TimORCID,Kunze JuliaORCID,Epler AndreaORCID,Frank AnikaORCID,Bendig JonasORCID,Schnalke NilsORCID,Wolz MartinORCID,Themann PeterORCID,Falkenburger BjörnORCID

Abstract

BACKGROUND

Phonematic and semantic verbal fluency tasks (VFTs) are widely used to capture cognitive deficits in people with neurodegenerative diseases. Counting the total number of words produced within a given time frame constitutes the most commonly used analysis for VFTs. The analysis of semantic and phonematic word clusters can provide additional information about frontal and temporal cognitive functions. Traditionally, clusters in the semantic VFT are identified using fixed word lists, which need to be created manually, lack standardization, and are language specific. Furthermore, it is not possible to identify semantic clusters in the phonematic VFT using this technique.

OBJECTIVE

The objective of this study was to develop a method for the automated analysis of semantically related word clusters for semantic and phonematic VFTs. Furthermore, we aimed to explore the cognitive domains captured by this analysis for people with Parkinson disease (PD).

METHODS

People with PD performed tablet-based semantic (51/85, 60%) and phonematic (69/85, 81%) VFTs. For both tasks, semantic word clusters were determined using a semantic relatedness model based on a neural network trained on the Wikipedia (Wikimedia Foundation) text corpus. The cluster characteristics derived from this model were compared with those derived from traditional evaluation methods of VFTs and a set of neuropsychological parameters.

RESULTS

For the semantic VFT, the cluster characteristics obtained through automated analyses showed good correlations with the cluster characteristics obtained through the traditional method. Cluster characteristics from automated analyses of phonematic and semantic VFTs correlated with the overall cognitive function reported by the Montreal Cognitive Assessment, executive function reported by the Frontal Assessment Battery and the Trail Making Test, and language function reported by the Boston Naming Test.

CONCLUSIONS

Our study demonstrated the feasibility of standardized automated cluster analyses of VFTs using semantic relatedness models. These models do not require manually creating and updating categorized word lists and, therefore, can be easily and objectively implemented in different languages, potentially allowing comparison of results across different languages. Furthermore, this method provides information about semantic clusters in phonematic VFTs, which cannot be obtained from traditional methods. Hence, this method could provide easily accessible digital biomarkers for executive and language functions in people with PD.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3