Using Speech Data From Interactions With a Voice Assistant to Predict the Risk of Future Accidents for Older Drivers: Prospective Cohort Study (Preprint)

Author:

Yamada YasunoriORCID,Shinkawa KaoruORCID,Kobayashi MasatomoORCID,Takagi HironobuORCID,Nemoto MiyukiORCID,Nemoto KiyotakaORCID,Arai TetsuakiORCID

Abstract

BACKGROUND

With the rapid growth of the older adult population worldwide, car accidents involving this population group have become an increasingly serious problem. Cognitive impairment, which is assessed using neuropsychological tests, has been reported as a risk factor for being involved in car accidents; however, it remains unclear whether this risk can be predicted using daily behavior data.

OBJECTIVE

The objective of this study was to investigate whether speech data that can be collected in everyday life can be used to predict the risk of an older driver being involved in a car accident.

METHODS

At baseline, we collected (1) speech data during interactions with a voice assistant and (2) cognitive assessment data—neuropsychological tests (Mini-Mental State Examination, revised Wechsler immediate and delayed logical memory, Frontal Assessment Battery, trail making test-parts A and B, and Clock Drawing Test), Geriatric Depression Scale, magnetic resonance imaging, and demographics (age, sex, education)—from older adults. Approximately one-and-a-half years later, we followed up to collect information about their driving experiences (with respect to car accidents) using a questionnaire. We investigated the association between speech data and future accident risk using statistical analysis and machine learning models.

RESULTS

We found that older drivers (n=60) with accident or near-accident experiences had statistically discernible differences in speech features that suggest cognitive impairment such as reduced speech rate (<i>P</i>=.048) and increased response time (<i>P</i>=.040). Moreover, the model that used speech features could predict future accident or near-accident experiences with 81.7% accuracy, which was 6.7% higher than that using cognitive assessment data, and could achieve up to 88.3% accuracy when the model used both types of data.

CONCLUSIONS

Our study provides the first empirical results that suggest analysis of speech data recorded during interactions with voice assistants could help predict future accident risk for older drivers by capturing subtle impairments in cognitive function.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3