Use and Understanding of Anonymization and De-Identification in the Biomedical Literature: Scoping Review (Preprint)

Author:

Chevrier RaphaëlORCID,Foufi VasilikiORCID,Gaudet-Blavignac ChristopheORCID,Robert ArnaudORCID,Lovis ChristianORCID

Abstract

BACKGROUND

The secondary use of health data is central to biomedical research in the era of data science and precision medicine. National and international initiatives, such as the Global Open Findable, Accessible, Interoperable, and Reusable (GO FAIR) initiative, are supporting this approach in different ways (eg, making the sharing of research data mandatory or improving the legal and ethical frameworks). Preserving patients’ privacy is crucial in this context. De-identification and anonymization are the two most common terms used to refer to the technical approaches that protect privacy and facilitate the secondary use of health data. However, it is difficult to find a consensus on the definitions of the concepts or on the reliability of the techniques used to apply them. A comprehensive review is needed to better understand the domain, its capabilities, its challenges, and the ratio of risk between the data subjects’ privacy on one side, and the benefit of scientific advances on the other.

OBJECTIVE

This work aims at better understanding how the research community comprehends and defines the concepts of de-identification and anonymization. A rich overview should also provide insights into the use and reliability of the methods. Six aspects will be studied: (1) terminology and definitions, (2) backgrounds and places of work of the researchers, (3) reasons for anonymizing or de-identifying health data, (4) limitations of the techniques, (5) legal and ethical aspects, and (6) recommendations of the researchers.

METHODS

Based on a scoping review protocol designed a priori, MEDLINE was searched for publications discussing de-identification or anonymization and published between 2007 and 2017. The search was restricted to MEDLINE to focus on the life sciences community. The screening process was performed by two reviewers independently.

RESULTS

After searching 7972 records that matched at least one search term, 135 publications were screened and 60 full-text articles were included. (1) Terminology: Definitions of the terms de-identification and anonymization were provided in less than half of the articles (29/60, 48%). When both terms were used (41/60, 68%), their meanings divided the authors into two equal groups (19/60, 32%, each) with opposed views. The remaining articles (3/60, 5%) were equivocal. (2) Backgrounds and locations: Research groups were based predominantly in North America (31/60, 52%) and in the European Union (22/60, 37%). The authors came from 19 different domains; computer science (91/248, 36.7%), biomedical informatics (47/248, 19.0%), and medicine (38/248, 15.3%) were the most prevalent ones. (3) Purpose: The main reason declared for applying these techniques is to facilitate biomedical research. (4) Limitations: Progress is made on specific techniques but, overall, limitations remain numerous. (5) Legal and ethical aspects: Differences exist between nations in the definitions, approaches, and legal practices. (6) Recommendations: The combination of organizational, legal, ethical, and technical approaches is necessary to protect health data.

CONCLUSIONS

Interest is growing for privacy-enhancing techniques in the life sciences community. This interest crosses scientific boundaries, involving primarily computer science, biomedical informatics, and medicine. The variability observed in the use of the terms de-identification and anonymization emphasizes the need for clearer definitions as well as for better education and dissemination of information on the subject. The same observation applies to the methods. Several legislations, such as the American Health Insurance Portability and Accountability Act (HIPAA) and the European General Data Protection Regulation (GDPR), regulate the domain. Using the definitions they provide could help address the variable use of these two concepts in the research community.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3