Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data (Preprint)

Author:

Sezgin EmreORCID,Hussain Syed-AmadORCID,Rust SteveORCID,Huang YunguiORCID

Abstract

BACKGROUND

Patient-generated health data (PGHD) captured via smart devices or digital health technologies can reflect an individual health journey. PGHD enables tracking and monitoring of personal health conditions, symptoms, and medications out of the clinic, which is crucial for self-care and shared clinical decisions. In addition to self-reported measures and structured PGHD (eg, self-screening, sensor-based biometric data), free-text and unstructured PGHD (eg, patient care note, medical diary) can provide a broader view of a patient’s journey and health condition. Natural language processing (NLP) is used to process and analyze unstructured data to create meaningful summaries and insights, showing promise to improve the utilization of PGHD.

OBJECTIVE

Our aim is to understand and demonstrate the feasibility of an NLP pipeline to extract medication and symptom information from real-world patient and caregiver data.

METHODS

We report a secondary data analysis, using a data set collected from 24 parents of children with special health care needs (CSHCN) who were recruited via a nonrandom sampling approach. Participants used a voice-interactive app for 2 weeks, generating free-text patient notes (audio transcription or text entry). We built an NLP pipeline using a zero-shot approach (adaptive to low-resource settings). We used named entity recognition (NER) and medical ontologies (RXNorm and SNOMED CT [Systematized Nomenclature of Medicine Clinical Terms]) to identify medication and symptoms. Sentence-level dependency parse trees and part-of-speech tags were used to extract additional entity information using the syntactic properties of a note. We assessed the data; evaluated the pipeline with the patient notes; and reported the precision, recall, and <i>F</i><sub>1</sub> scores.

RESULTS

In total, 87 patient notes are included (audio transcriptions n=78 and text entries n=9) from 24 parents who have at least one CSHCN. The participants were between the ages of 26 and 59 years. The majority were White (n=22, 92%), had more than one child (n=16, 67%), lived in Ohio (n=22, 92%), had mid- or upper-mid household income (n=15, 62.5%), and had higher level education (n=24, 58%). Out of 87 notes, 30 were drug and medication related, and 46 were symptom related. We captured medication instances (medication, unit, quantity, and date) and symptoms satisfactorily (precision &gt;0.65, recall &gt;0.77, <i>F</i><sub>1</sub>&gt;0.72). These results indicate the potential when using NER and dependency parsing through an NLP pipeline on information extraction from unstructured PGHD.

CONCLUSIONS

The proposed NLP pipeline was found to be feasible for use with real-world unstructured PGHD to accomplish medication and symptom extraction. Unstructured PGHD can be leveraged to inform clinical decision-making, remote monitoring, and self-care including medical adherence and chronic disease management. With customizable information extraction methods using NER and medical ontologies, NLP models can feasibly extract a broad range of clinical information from unstructured PGHD in low-resource settings (eg, a limited number of patient notes or training data).

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3