Multi-scale Bowel Sound Event Spotting in Highly Imbalanced Wearable Monitoring Data: Algorithm Development and Validation (Preprint)

Author:

Baronetto AnnalisaORCID,Graf Luisa,Fischer SarahORCID,Neurath MarkusORCID,Amft OliverORCID

Abstract

BACKGROUND

Abdominal auscultation, i.e. listening to Bowel Sounds (BS), can be used to analyse digestion. An automated retrieval of BS would be beneficial to assess gastro-intestinal disorders non-invasively.

OBJECTIVE

To develop a multi-scale spotting model to detect BS in continuous audio data from a wearable monitoring system.

METHODS

We designed a spotting model based on Efficient-U-Net (EffUNet) architecture to analyse 10-second audio segments at a time and spot BS with a temporal resolution of 25 ms. Evaluation data was collected across different digestive phases from 18 healthy participants and 9 patients with Inflammatory Bowel Disease (IBD). Audio data were recorded in a daytime setting with a T-Shirt that embeds digital microphones. The dataset was annotated by independent raters with substantial agreement (Cohen’s κ between 0.70 and 0.75), resulting in 136 h of labelled data. In total, 11482 BS were analysed, with BS duration ranging between 18 ms and 6.3 s. The share of BS in the dataset (BS ratio) was 0.89%. We analysed performance depending on noise level, BS duration, and BS event rate, as well as report spotting timing errors.

RESULTS

Leave-One-Participant-Out cross-validation of BS event spotting yielded a median F1 score of 0.73 for both, healthy volunteers and patients. EffUNet detected BS in different noise conditions with 0.73 recall and 0.72 precision. In particular, for SNR > 4 dB, more than 83% of BS were recognised, with precision ≥ 0.77. EffUNet recall dropped below 0.60 for BS duration ≥ 1.5 s. At BS ratio > 5%, our model precision was > 0.83. For both healthy participants and patients, insertion and deletion timing errors were the largest, with a total of 15.54 min insertion errors and 13.08 min of deletion errors over the total audio dataset. On our dataset, EffUNet outperform existing BS spotting models that provide similar temporal resolution.

CONCLUSIONS

The EffUNet spotter is robust against background noise and can retrieve BS with varying duration. EffUNet outperforms previous BS detection approaches in unmodified audio data, containing highly sparse BS events.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3