Application of a Low-Cost mHealth Solution for the Remote Monitoring of Patients With Epilepsy: Algorithm Development and Validation (Preprint)

Author:

Sriraam NatarajanORCID,Raghu SORCID,Gommer Erik DORCID,Hilkman Danny M WORCID,Temel YasinORCID,Vasudeva Rao ShyamORCID,Hegde Alangar SatyaranjandasORCID,L Kubben PieterORCID

Abstract

BACKGROUND

Implementing automated seizure detection in long-term electroencephalography (EEG) analysis enables the remote monitoring of patients with epilepsy, thereby improving their quality of life.

OBJECTIVE

The objective of this study was to explore an mHealth (mobile health) solution by investigating the feasibility of smartphones for processing large EEG recordings for the remote monitoring of patients with epilepsy.

METHODS

We developed a mobile app to automatically analyze and classify epileptic seizures using EEG. We used the cross-database model developed in our previous study, incorporating successive decomposition index and matrix determinant as features, adaptive median feature baseline correction for overcoming interdatabase feature variation, and postprocessing-based support vector machine for classification using 5 different EEG databases. The Sezect (Seizure Detect) Android app was built using the Chaquopy software development kit, which uses the Python language in Android Studio. Various durations of EEG signals were tested on different smartphones to check the feasibility of the Sezect app.

RESULTS

We observed a sensitivity of 93.5%, a specificity of 97.5%, and a false detection rate of 1.5 per hour for EEG recordings using the Sezect app. The various mobile phones did not differ substantially in processing time, which indicates a range of phone models can be used for implementation. The computational time required to process real-time EEG data via smartphones and the classification results suggests that our mHealth app could be a valuable asset for monitoring patients with epilepsy.

CONCLUSIONS

Smartphones have multipurpose use in health care, offering tools that can improve the quality of patients’ lives.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3