Artificial Intelligence Applications for Assessment, Monitoring, and Management of Parkinson Disease Symptoms: Protocol for a Systematic Review (Preprint)

Author:

Bounsall KatieORCID,Milne-Ives MadisonORCID,Hall AndrewORCID,Carroll CamilleORCID,Meinert EdwardORCID

Abstract

BACKGROUND

Parkinson disease (PD) is the second most prevalent neurodegenerative disease, with around 10 million people with PD worldwide. Current assessments of PD symptoms are conducted by questionnaires and clinician assessments and have many limitations, including unreliable reporting of symptoms, little autonomy for patients over their disease management, and standard clinical review intervals regardless of disease status or clinical need. To address these limitations, digital technologies including wearable sensors, smartphone apps, and artificial intelligence (AI) methods have been implemented for this population. Many reviews have explored the use of AI in the diagnosis of PD and management of specific symptoms; however, there is limited research on the application of AI to the monitoring and management of the range of PD symptoms. A comprehensive review of the application of AI methods is necessary to address the gap of high-quality reviews and highlight the developments of the use of AI within PD care.

OBJECTIVE

The purpose of this protocol is to guide a systematic review to identify and summarize the current applications of AI applied to the assessment, monitoring, and management of PD symptoms.

METHODS

This review protocol was structured using the PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols) and the Population, Intervention, Comparator, Outcome, and Study (PICOS) frameworks. The following 5 databases will be systematically searched: PubMed, IEEE Xplore, Institute for Scientific Information’s Web of Science, Scopus, and the Cochrane Library. Title and abstract screening, full-text review, and data extraction will be conducted by 2 independent reviewers. Data will be extracted into a predetermined form, and any disagreements in screening or extraction will be discussed. Risk of bias will be assessed using the Cochrane Collaboration Risk of Bias 2 tool for randomized trials and the Mixed Methods Appraisal Tool for nonrandomized trials.

RESULTS

As of April 2023, this systematic review has not yet been started. It is expected to begin in May 2023, with the aim to complete by September 2023.

CONCLUSIONS

The systematic review subsequently conducted as a product of this protocol will provide an overview of the AI methods being used for the assessment, monitoring, and management of PD symptoms. This will identify areas for further research in which AI methods can be applied to the assessment or management of PD symptoms and could support the future implementation of AI-based tools for the effective management of PD.

INTERNATIONAL REGISTERED REPORT

PRR1-10.2196/46581

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3