The Adoption of a Virtual Reality–Assisted Training System for Mental Rotation: A Partial Least Squares Structural Equation Modeling Approach (Preprint)

Author:

Chang Chen-WeiORCID,Yeh Shih-ChingORCID,Li MengtongORCID

Abstract

BACKGROUND

Virtual reality (VR) technologies have been developed to assist education and training. Although recent research suggested that the application of VR led to effective learning and training outcomes, investigations concerning the acceptance of these VR systems are needed to better urge learners and trainees to be active adopters.

OBJECTIVE

This study aimed to create a theoretical model to examine how determining factors from relevant theories of technology acceptance can be used to explain the acceptance of a novel VR-assisted mental rotation (MR) training system created by our research team to better understand how to encourage learners to use VR technology to enhance their spatial ability.

METHODS

Stereo and interactive MR tasks based on Shepard and Metzler’s pencil and paper test for MR ability were created. The participants completed a set of MR tasks using 3D glasses and stereoscopic display and a 6-degree-of-freedom joystick controller. Following task completion, psychometric constructs from theories and previous studies (ie, perceived ease of use, perceived enjoyment, attitude, satisfaction, and behavioral intention to use the system) were used to measure relevant factors influencing behavior intentions.

RESULTS

The statistical technique of partial least squares structural equation modeling was applied to analyze the data. The model explained 47.7% of the novel, VR-assisted MR training system’s adoption intention, which suggests that the model has moderate explanatory power. Direct and indirect effects were also interpreted.

CONCLUSIONS

The findings of this study have both theoretical and practical importance not only for MR training but also for other VR-assisted education. The results can extend current theories from the context of information systems to educational and training technology, specifically for the use of VR-assisted systems and devices. The empirical evidence has practical implications for educators, technology developers, and policy makers regarding MR training.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3