Data-Driven Identification of Potentially Successful Intervention Implementations Using 5 Years of Opioid Prescribing Data: Retrospective Database Study (Preprint)

Author:

Hopcroft Lisa EMORCID,Curtis Helen JORCID,Croker RichardORCID,Pretis FelixORCID,Inglesby PeterORCID,Evans DavidORCID,Bacon SebastianORCID,Goldacre BenORCID,Walker Alex JORCID,MacKenna BrianORCID

Abstract

BACKGROUND

We have previously demonstrated that opioid prescribing increased by 127% between 1998 and 2016. New policies aimed at tackling this increasing trend have been recommended by public health bodies, and there is some evidence that progress is being made.

OBJECTIVE

We sought to extend our previous work and develop a data-driven approach to identify general practices and clinical commissioning groups (CCGs) whose prescribing data suggest that interventions to reduce the prescribing of opioids may have been successfully implemented.

METHODS

We analyzed 5 years of prescribing data (December 2014 to November 2019) for 3 opioid prescribing measures—total opioid prescribing as oral morphine equivalent per 1000 registered population, the number of high-dose opioids prescribed per 1000 registered population, and the number of high-dose opioids as a percentage of total opioids prescribed. Using a data-driven approach, we applied a modified version of our change detection Python library to identify reductions in these measures over time, which may be consistent with the successful implementation of an intervention to reduce opioid prescribing. This analysis was carried out for general practices and CCGs, and organizations were ranked according to the change in prescribing rate.

RESULTS

We identified a reduction in total opioid prescribing in 94 (49.2%) out of 191 CCGs, with a median reduction of 15.1 (IQR 11.8-18.7; range 9.0-32.8) in total oral morphine equivalence per 1000 patients. We present data for the 3 CCGs and practices demonstrating the biggest reduction in opioid prescribing for each of the 3 opioid prescribing measures. We observed a 40% proportional drop (8.9% absolute reduction) in the regular prescribing of high-dose opioids (measured as a percentage of regular opioids) in the highest-ranked CCG (North Tyneside); a 99% drop in this same measure was found in several practices (44%-95% absolute reduction). Decile plots demonstrate that CCGs exhibiting large reductions in opioid prescribing do so via slow and gradual reductions over a long period of time (typically over a period of 2 years); in contrast, practices exhibiting large reductions do so rapidly over a much shorter period of time.

CONCLUSIONS

By applying 1 of our existing analysis tools to a national data set, we were able to identify rapid and maintained changes in opioid prescribing within practices and CCGs and rank organizations by the magnitude of reduction. Highly ranked organizations are candidates for further qualitative research into intervention design and implementation.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3