An Advanced Machine Learning Model for a Web-Based Artificial Intelligence–Based Clinical Decision Support System Application: Model Development and Validation Study (Preprint)

Author:

Lin Tai-HanORCID,Chung Hsing-YiORCID,Jian Ming-JrORCID,Chang Chih-KaiORCID,Perng Cherng-LihORCID,Liao Guo-ShiouORCID,Yu Jyh-CherngORCID,Dai Ming-ShenORCID,Yu Cheng-PingORCID,Shang Hung-ShengORCID

Abstract

BACKGROUND

Breast cancer is a leading global health concern, necessitating advancements in recurrence prediction and management. The development of an artificial intelligence (AI)–based clinical decision support system (AI-CDSS) using ChatGPT addresses this need with the aim of enhancing both prediction accuracy and user accessibility.

OBJECTIVE

This study aims to develop and validate an advanced machine learning model for a web-based AI-CDSS application, leveraging the question-and-answer guidance capabilities of ChatGPT to enhance data preprocessing and model development, thereby improving the prediction of breast cancer recurrence.

METHODS

This study focused on developing an advanced machine learning model by leveraging data from the Tri-Service General Hospital breast cancer registry of 3577 patients (2004-2016). As a tertiary medical center, it accepts referrals from four branches—3 branches in the northern region and 1 branch on an offshore island in our country—that manage chronic diseases but refer complex surgical cases, including breast cancer, to the main center, enriching our study population’s diversity. Model training used patient data from 2004 to 2012, with subsequent validation using data from 2013 to 2016, ensuring comprehensive assessment and robustness of our predictive models. ChatGPT is integral to preprocessing and model development, aiding in hormone receptor categorization, age binning, and one-hot encoding. Techniques such as the synthetic minority oversampling technique address the imbalance of data sets. Various algorithms, including light gradient-boosting machine, gradient boosting, and extreme gradient boosting, were used, and their performance was evaluated using metrics such as the area under the curve, accuracy, sensitivity, and <i>F</i><sub>1</sub>-score.

RESULTS

The light gradient-boosting machine model demonstrated superior performance, with an area under the curve of 0.80, followed closely by the gradient boosting and extreme gradient boosting models. The web interface of the AI-CDSS tool was effectively tested in clinical decision-making scenarios, proving its use in personalized treatment planning and patient involvement.

CONCLUSIONS

The AI-CDSS tool, enhanced by ChatGPT, marks a significant advancement in breast cancer recurrence prediction, offering a more individualized and accessible approach for clinicians and patients. Although promising, further validation in diverse clinical settings is recommended to confirm its efficacy and expand its use.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3