Segmenting Patients With Diabetes With the Navigator Service in Primary Care and a Description of the Self-Acting Patient Group: Cross-Sectional Study (Preprint)

Author:

Riihimies RiikkaORCID,Kosunen EliseORCID,Koskela Tuomas HORCID

Abstract

BACKGROUND

The aim of patient segmentation is to recognize patients with similar health care needs. The Finnish patient segmentation service Navigator segregates patients into 4 groups, including a self-acting group, who presumably manages their everyday life and coordinates their health care. Digital services could support their self-care. Knowledge on self-acting patients’ characteristics is lacking.

OBJECTIVE

The study aims are to describe how Navigator assigns patients with diabetes to the 4 groups at nurses’ appointments at a health center, the self-acting patient group’s characteristics compared with other patient groups, and the concordance between the nurse’s evaluation of the patient’s group and the actual group assigned by Navigator (criterion validity).

METHODS

Patients with diabetes ≥18 years old visiting primary care were invited to participate in this cross-sectional study. Patients with disability preventing informed consent for participation were excluded. Nurses estimated the patients’ upcoming group results before the appointment. We describe the concordance (%) between the evaluation and actual groups. Nurses used Navigator patients with diabetes (n=304) at their annual follow-up visits. The self-acting patients’ diabetes care values (glycated hemoglobin [HbA1c], urine albumin to creatinine ratio, low-density lipoprotein cholesterol, blood pressure, BMI), chronic conditions, medication, smoking status, self-rated health, disability (World Health Organization Disability Assessment Schedule [WHODAS] 2.0), health-related quality of life (EQ-5D-5L), and well-being (Well-being Questionnaire [WBQ-12]) and the patients’ responses to Navigator’s question concerning their digital skills as outcome variables were compared with those of the other patients. We used descriptive statistics for the patients’ distribution into the 4 groups and demographic data. We used the Mann-Whitney U test with nonnormally distributed variables, independent samples <i>t</i> test with normally distributed variables, and Pearson chi-square tests with categorized variables to compare the groups.

RESULTS

Most patients (259/304, 85.2%) were in the self-acting group. Hypertension, hyperlipidemia, and joint ailments were the most prevalent comorbidities among all patients. Self-acting patients had less ischemic cardiac disease (<i>P</i>=.001), depression or anxiety (<i>P</i>=.03), asthma or chronic obstructive pulmonary disease (<i>P</i>&lt;.001), long-term pain (<i>P</i>&lt;.001), and related medication. Self-acting patients had better self-rated health (<i>P</i>&lt;.001), functional ability (<i>P</i>&lt;.001), health-related quality of life (<i>P</i>&lt;.001), and general well-being (<i>P</i>&lt;.001). All patients considered their skills at using electronic services to be good.

CONCLUSIONS

The patients in the self-acting group had several comorbidities. However, their functional ability was not yet diminished compared with patients in the other groups. Therefore, to prevent diabetic complications and disabilities, support for patients’ self-management should be emphasized in their integrated care services. Digital services could be involved in the care of patients willing to use them. The study was performed in 1 health center, the participants were volunteers, and most patients were assigned to self-acting patient group. These facts limit the generalizability of our results.

INTERNATIONAL REGISTERED REPORT

RR2-10.2196/20570

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3