Web application to support evidence of individual emotional impact evoked by COVID-19 pandemic restrictions (Preprint)

Author:

Mitre-Hernandez HugoORCID,Ferro-Perez Rodolfo,Gonzalez-Hernandez Francisco

Abstract

BACKGROUND

Mental health effects during COVID-19 quarantine need to be handled because patients, relatives, and healthcare workers are living with negative emotional behaviors. The clinical disorders of depression and anxiety are evoking anger, fear, sadness, disgust, and reducing happiness. Therefore, track emotions with the help of psychologists on online consultations –to reduce the risk of contagion– will go a long way in assisting with mental health. The human micro-expressions can describe genuine emotions of people and can be captured by Deep Neural Networks (DNNs) models. But the challenge is to implement it under the poor performance of a part of society's computers and the low speed of internet connection.

OBJECTIVE

This study aimed to create a useful and usable web application to record emotions in a patient’s card in real-time, achieving a small data transfer, and a Convolutional Neural Networks (CNN) model with a low computational cost.

METHODS

To validate the low computational cost premise, firstly, we compare DNN architectures results, collecting the floating-point operations per second (FLOPS), the Number of Parameters (NP) and accuracy from the MobileNet, PeleeNet, Extended Deep Neural Network (EDNN), Inception- Based Deep Neural Network (IDNN) and our proposed Residual mobile-based Network (ResmoNet) model. Secondly, we compare the trained models' results in terms of Main Memory Utilization (MMU) and Response Time to complete the Emotion recognition (RTE). Finally, we design a data transfer that includes the raw data of emotions and the basic text information of the patient. The web application was evaluated with the System Usability Scale (SUS) and a utility questionnaire by psychologists and psychiatrists (experts).

RESULTS

All CNN models were set up using 150 epochs for training and testing comparing the results for each variable in ResmoNet with the best model. It was obtained that ResmoNet has 115,976 NP less than MobileNet, 243,901 FLOPS less than MobileNet, and 5% less accuracy than EDNN (95%). Moreover, ResmoNet used less MMU than any model, only EDNN overcomes ResmoNet in 0.01 seconds for RTE. Finally, with our model, we develop a web application to collect emotions in real-time during a psychological consultation. For data transfer, the patient’s card and raw emotional data have 2 kb with a UTF-8 encoding approximately. Finally, according to the experts, the web application has good usability (73.8 of 100) and utility (3.94 of 5).

CONCLUSIONS

A usable and useful web application for psychologists and psychiatrists is presented. This tool includes an efficient and light facial emotion recognition model. Its purpose is to be a complementary tool for diagnostic processes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3