Development and Validation of Clinical Prediction Models for Surgical Success in Patients With Endometriosis: Protocol for a Mixed Methods Study (Preprint)

Author:

Marlin NadineORCID,Rivas CarolORCID,Allotey JohnORCID,Dodds JulieORCID,Horne AndrewORCID,Ball ElizabethORCID

Abstract

BACKGROUND

Endometriosis is a chronic inflammatory condition affecting 6%-10% of women of reproductive age and is defined by the presence of endometrial-like tissue outside the uterus (lesions), commonly affecting the pelvis and ovaries. It is associated with debilitating pelvic pain, infertility, and fatigue and often has devastating effects on the quality of life (QoL). Although it is as common as back pain, it is poorly understood, and treatment and diagnosis are often delayed, leading to unnecessary suffering. Endometriosis has no cure. Surgery is one of several management options. Quantifying the probability of successful surgery is important for guiding clinical decisions and treatment strategies. Factors predicting success through pain reduction after endometriosis surgery have not yet been adequately identified.

OBJECTIVE

This study aims to determine which women with confirmed endometriosis benefit from surgical improvement in pain and QoL and whether these women could be identified from clinical symptoms measured before laparoscopy.

METHODS

First, we will carry out a systematic search and review and, if appropriate, meta-analysis of observational cohort and case-control studies reporting one or more risk factors for endometriosis and postsurgical treatment success. We will search PubMed, Embase, and Cochrane databases from inception without language restrictions and supplement the reference lists by manual searches. Second, we will develop separate clinical prediction models for women with confirmed and suspected diagnoses of endometriosis. A total of three suitable databases have been identified for development and external validation (the MEDAL [ISRCTN13028601] and LUNA [ISRCTN41196151] studies, and the BSGE database), and access has been guaranteed. The models will be developed using a linear regression approach that links candidate factors to outcomes. Third, we will hold 2 stakeholder co-design workshops involving eight clinicians and eight women with endometriosis separately and then bring all 16 participants together. Participants will discuss the implementation, delivery, usefulness, and sustainability of the prediction models. Clinicians will also focus on the ease of use and access to clinical prediction tools.

RESULTS

This project was funded in March 2018 and approved by the Institutional Research Ethics Board in December 2019. At the time of writing, this study was in the data analysis phase, and the results are expected to be available in April 2021.

CONCLUSIONS

This study is the first to aim to predict who will benefit most from laparoscopic surgery through the reduction of pain or increased QoL. The models will provide clinicians with robustly developed and externally validated support tools, improving decision making in the diagnosis and treatment of women.

INTERNATIONAL REGISTERED REPORT

DERR1-10.2196/20986

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3