Deep Phenotyping of Chinese Electronic Health Records by Recognizing Linguistic Patterns of Phenotypic Narratives With a Sequence Motif Discovery Tool: Algorithm Development and Validation (Preprint)

Author:

Li ShichengORCID,Deng LizongORCID,Zhang XuORCID,Chen LumingORCID,Yang TaoORCID,Qi YifanORCID,Jiang TaijiaoORCID

Abstract

BACKGROUND

Phenotype information in electronic health records (EHRs) is mainly recorded in unstructured free text, which cannot be directly used for clinical research. EHR-based deep-phenotyping methods can structure phenotype information in EHRs with high fidelity, making it the focus of medical informatics. However, developing a deep-phenotyping method for non-English EHRs (ie, Chinese EHRs) is challenging. Although numerous EHR resources exist in China, fine-grained annotation data that are suitable for developing deep-phenotyping methods are limited. It is challenging to develop a deep-phenotyping method for Chinese EHRs in such a low-resource scenario.

OBJECTIVE

In this study, we aimed to develop a deep-phenotyping method with good generalization ability for Chinese EHRs based on limited fine-grained annotation data.

METHODS

The core of the methodology was to identify linguistic patterns of phenotype descriptions in Chinese EHRs with a sequence motif discovery tool and perform deep phenotyping of Chinese EHRs by recognizing linguistic patterns in free text. Specifically, 1000 Chinese EHRs were manually annotated based on a fine-grained information model, PhenoSSU (Semantic Structured Unit of Phenotypes). The annotation data set was randomly divided into a training set (n=700, 70%) and a testing set (n=300, 30%). The process for mining linguistic patterns was divided into three steps. First, free text in the training set was encoded as single-letter sequences (P: phenotype, A: attribute). Second, a biological sequence analysis tool—MEME (Multiple Expectation Maximums for Motif Elicitation)—was used to identify motifs in the single-letter sequences. Finally, the identified motifs were reduced to a series of regular expressions representing linguistic patterns of PhenoSSU instances in Chinese EHRs. Based on the discovered linguistic patterns, we developed a deep-phenotyping method for Chinese EHRs, including a deep learning–based method for named entity recognition and a pattern recognition–based method for attribute prediction.

RESULTS

In total, 51 sequence motifs with statistical significance were mined from 700 Chinese EHRs in the training set and were combined into six regular expressions. It was found that these six regular expressions could be learned from a mean of 134 (SD 9.7) annotated EHRs in the training set. The deep-phenotyping algorithm for Chinese EHRs could recognize PhenoSSU instances with an overall accuracy of 0.844 on the test set. For the subtask of entity recognition, the algorithm achieved an F1 score of 0.898 with the Bidirectional Encoder Representations from Transformers–bidirectional long short-term memory and conditional random field model; for the subtask of attribute prediction, the algorithm achieved a weighted accuracy of 0.940 with the linguistic pattern–based method.

CONCLUSIONS

We developed a simple but effective strategy to perform deep phenotyping of Chinese EHRs with limited fine-grained annotation data. Our work will promote the second use of Chinese EHRs and give inspiration to other non–English-speaking countries.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3