BACKGROUND
Social media has transformed the way health messages are communicated. This has created new challenges and ethical considerations while providing a platform to share nutrition information for communities to connect and for information to spread. However, research exploring the web-based diet communities of <i>popular diets</i> is limited.
OBJECTIVE
This study aims to characterize the web-based discourse of popular diets, describe information dissemination, identify influential voices, and explore interactions between community networks and themes of mental health.
METHODS
This exploratory study used Twitter social media posts for an online social network analysis. Popular diet keywords were systematically developed, and data were collected and analyzed using the NodeXL metrics tool (Social Media Research Foundation) to determine the key network metrics (vertices, edges, cluster algorithms, graph visualization, centrality measures, text analysis, and time-series analytics).
RESULTS
The vegan and ketogenic diets had the largest networks, whereas the zone diet had the smallest network. In total, 31.2% (54/173) of the top users endorsed the corresponding diet, and 11% (19/173) claimed a health or science education, which included 1.2% (2/173) of dietitians. Complete fragmentation and hub and spoke messaging were the dominant network structures. In total, 69% (11/16) of the networks interacted, where the ketogenic diet was mentioned most, with depression and anxiety and eating disorder words most prominent in the “zone diet” network and the least prominent in the “soy-free,” “vegan,” “dairy-free,” and “gluten-free” diet networks.
CONCLUSIONS
Social media activity reflects diet trends and provides a platform for nutrition information to spread through resharing. A longitudinal exploration of popular diet networks is needed to further understand the impact social media can have on dietary choices. Social media training is vital, and nutrition professionals must work together as a community to actively reshare evidence-based posts on the web.