Classification Framework for Healthy Hairs and Alopecia Areata using Machine Learning (Preprint)

Author:

Shakeel Choudhary Sobhan,Khan Saad Jawaid,Aijaz Syeda Fatima,Hassan Umer,Chaudhry Beenish

Abstract

BACKGROUND

Alopecia areata is an auto-immune disorder that involves non-scarring hair loss in well-defined patches as well as affecting the entire scalp region and ultimately leads to baldness. The latest worldwide statistics have exhibited that Alopecia areata affects millions of people. Furthermore, the use of conventional methods often leads to poor diagnosis of Alopecia ultimately increasing the medical financial burden on the population. It has been reported that 85% of the individuals suffering from Alopecia areata complain about significant financial burden along with associated costs that are beyond cosmetic concerns. Many individuals adhere to treatment discontinuation owing to enhanced expenses and poor diagnosis.

OBJECTIVE

The objectives of the study comprise of utilizing datasets of healthy hairs and Alopecia areata, extracting color, texture and shape features from the images and applying machine learning algorithms including support vector machine (SVM) and k-nearest neighbor (KNN).

METHODS

Two datasets with images of healthy hairs and Alopecia areata have been utilized. A total of 200 healthy hair images were retrieved from Figaro1k dataset. A total of 68 images of Alopecia areata were retrieved from a dataset known as Dermnet. The images initially go through pre-processing steps including enhancement and segmentation. Following image segmentation, three features of color, texture and shape are extracted. Following feature extraction, machine learning algorithms including support vector machine (SVM) and k-nearest neighbor (KNN) are applied that aid in classifying Alopecia areata and healthy hairs.

RESULTS

A total of 81 images are tested with support vector machine (SVM) and k- nearest neighbor (KNN) yielding an accuracy of 91.4% and 88.9% respectively. The results of the paired sample T-test via SPSS analysis demonstrate a p < 0.001 and exhibits that the accuracies acquired from the two machine learning techniques are significantly different. The accuracies reported will enable a hair expert in recommending a suitable diagnosis and hair treatment regimen to a patient.

CONCLUSIONS

The application of support vector machine (SVM) presented an accuracy of 91.4% and that of k-nearest neighbor (KNN) presented an accuracy of 88.9%. These accuracies exhibit that the proposed classification framework is found to be successful and robust. However, future work with deep learning techniques such as convolutional neural networks (CNN) can be also be carried out and integrated with the existing system.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3