Development of a Prediction Model for Healthy Life Years Without Activity Limitation: National Cross-sectional Study (Preprint)

Author:

Nishi MasahiroORCID,Nagamitsu ReoORCID,Matoba SatoakiORCID

Abstract

BACKGROUND

In some countries, including Japan—the leading country in terms of longevity, life expectancy has been increasing; meanwhile, healthy life years have not kept pace, necessitating an effective health policy to narrow the gap.

OBJECTIVE

The aim of this study is to develop a prediction model for healthy life years without activity limitations and deploy the model in a health policy to prolong healthy life years.

METHODS

The Comprehensive Survey of Living Conditions, a cross-sectional national survey of Japan, was conducted by the Japanese Ministry of Health, Labour and Welfare in 2013, 2016, and 2019. The data from 1,537,773 responders were used for modelling using machine learning. All participants were randomly split into training (n=1,383,995, 90%,) and test (n=153,778, 10%) subsets. Extreme gradient boosting classifier was implemented. Activity limitations were set as the target. Age, sex, and 40 types of diseases or injuries were included as features. Healthy life years without activity limitations were calculated by incorporating the predicted prevalence rate of activity limitations in a life table. For the wide utility of the model in individuals, we developed an application tool for the model.

RESULTS

In the groups without (n=1,329,901) and with (n=207,872) activity limitations, the median age was 47 (IQR 30-64) and 69 (IQR 54-80) years, respectively (<i>P</i>&lt;.001); female sex comprised 51.3% (n=681,794) in the group without activity limitations and 56.9% (n=118,339) in the group with activity limitations (<i>P</i>&lt;.001). A total of 42 features were included in the feature set. Age had the highest impact on model accuracy, followed by depression or other mental diseases; back pain; bone fracture; other neurological disorders, pain, or paralysis; stroke, cerebral hemorrhage, or infarction; arthritis; Parkinson disease; dementia; and other injuries or burns. The model exhibited high performance with an area under the receiver operating characteristic curve of 0.846 (95% CI 0.842-0.849) with exact calibration for the average probability and fraction of positives. The prediction results were consistent with the observed values of healthy life years for both sexes in each year (range of difference between predictive and observed values: −0.89 to 0.16 in male and 0.61 to 1.23 in female respondents). We applied the prediction model to a regional health policy to prolong healthy life years by adjusting the representative predictors to a target prevalence rate. Additionally, we presented the health condition without activity limitations index, followed by the application development for individual health promotion.

CONCLUSIONS

The prediction model will enable national or regional governments to establish an effective health promotion policy for risk prevention at the population and individual levels to prolong healthy life years. Further investigation is needed to validate the model’s adaptability to various ethnicities and, in particular, to countries where the population exhibits a short life span.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3