A Personalized Avatar-Based Web Application to Help People Understand How Social Distancing Can Reduce the Spread of COVID-19: Cross-sectional, Observational, Pre-Post Study (Preprint)

Author:

Etienne DorianeORCID,Archambault PatrickORCID,Aziaka DonovanORCID,Chipenda-Dansokho SelmaORCID,Dubé EveORCID,Fallon Catherine SORCID,Hakim HinaORCID,Kindrachuk JasonORCID,Krecoum DanORCID,MacDonald Shannon EORCID,Ndjaboue RuthORCID,Noubi MagniolORCID,Paquette Jean-SébastienORCID,Parent ElizabethORCID,Witteman Holly OORCID

Abstract

BACKGROUND

To reduce the transmission of SARS-CoV-2 and the associated spread of COVID-19, many jurisdictions around the world imposed mandatory or recommended social or physical distancing. As a result, at the beginning of the pandemic, various communication materials appeared online to promote distancing. Explanations of the science underlying these mandates or recommendations were either highly technical or highly simplified.

OBJECTIVE

This study aimed to understand the effects of a dynamic visualization on distancing. Our overall aim was to help people understand the dynamics of the spread of COVID-19 in their community and the implications of their own behavior for themselves, those around them, the health care system, and society.

METHODS

Using Scrum, which is an agile framework; JavaScript (Vue.js framework); and code already developed for risk communication in another context of infectious disease transmission, we rapidly developed a new personalized web application. In our application, people make avatars that represent themselves and the people around them. These avatars are integrated into a 3-minute animation illustrating an epidemiological model for COVID-19 transmission, showing the differences in transmission with and without distancing. During the animation, the narration explains the science of how distancing reduces the transmission of COVID-19 in plain language in English or French. The application offers full captions to complement the narration and a descriptive transcript for people using screen readers. We used Google Analytics to collect standard usage statistics. A brief, anonymous, optional survey also collected self-reported distancing behaviors and intentions in the previous and coming weeks, respectively. We launched and disseminated the application on Twitter and Facebook on April 8, 2020, and April 9, 2020.

RESULTS

After 26 days, the application received 3588 unique hits from 82 countries. The optional survey at the end of the application collected 182 responses. Among this small subsample of users, survey respondents were nearly (170/177, 96%) already practicing distancing and indicated that they intended to practice distancing in the coming week (172/177, 97.2%). Among the small minority of people (n=7) who indicated that they had not been previously practicing distancing, 2 (29%) reported that they would practice distancing in the week to come.

CONCLUSIONS

We developed a web application to help people understand the relationship between individual-level behavior and population-level effects in the context of an infectious disease spread. This study also demonstrates how agile development can be used to quickly create personalized risk messages for public health issues like a pandemic. The nonrandomized design of this rapid study prevents us from concluding the application’s effectiveness; however, results thus far suggest that avatar-based visualizations may help people understand their role in infectious disease transmission.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3