BACKGROUND
Frequent spontaneous facial self-touches, predominantly during outbreaks, have the theoretical potential to be a mechanism of contracting and transmitting diseases. Despite the recent advent of vaccines, behavioral approaches remain an integral part of reducing the spread of COVID-19 and other respiratory illnesses. Real-time biofeedback of face touching can potentially mitigate the spread of respiratory diseases. The gap addressed in this study is the lack of an on-demand platform that utilizes motion data from smartwatches to accurately detect face touching.
OBJECTIVE
The aim of this study was to utilize the functionality and the spread of smartwatches to develop a smartwatch application to identifying motion signatures that are mapped accurately to face touching.
METHODS
Participants (n=10, 50% women, aged 20-83) performed 10 physical activities classified into: face touching (FT) and non-face touching (NFT) categories, in a standardized laboratory setting. We developed a smartwatch application on Samsung Galaxy Watch to collect raw accelerometer data from participants. Then, data features were extracted from consecutive non-overlapping windows varying from 2-16 seconds. We examined the performance of state-of-the-art machine learning methods on face touching movements recognition (FT vs NFT) and individual activity recognition (IAR): logistic regression, support vector machine, decision trees and random forest.
RESULTS
Machine learning models were accurate in recognizing face touching categories; logistic regression achieved the best performance across all metrics (Accuracy: 0.93 +/- 0.08, Recall: 0.89 +/- 0.16, Precision: 0.93 +/- 0.08, F1-score: 0.90 +/- 0.11, AUC: 0.95 +/- 0.07) at the window size of 5 seconds. IAR models resulted in lower performance; the random forest classifier achieved the best performance across all metrics (Accuracy: 0.70 +/- 0.14, Recall: 0.70 +/- 0.14, Precision: 0.70 +/- 0.16, F1-score: 0.67 +/- 0.15) at the window size of 9 seconds.
CONCLUSIONS
Wearable devices, powered with machine learning, are effective in detecting facial touches. This is highly significant during respiratory infection outbreaks, as it has a great potential to refrain people from touching their faces and potentially mitigate the possibility of transmitting COVID-19 and future respiratory diseases.