RepPer: Perception of Psychiatric Disorders on Twitter in French (Preprint)

Author:

Delanys Sarah,Benamara Farah,Moriceau Véronique,Olivier François,Mothe Josiane

Abstract

BACKGROUND

With the advent of digital technology and specifically user generated contents in social media, new ways emerged for studying possible stigma of people in relation with mental health. Several pieces of work studied the discourse conveyed about psychiatric pathologies on Twitter considering mostly tweets in English and a limited number of psychiatric disorders terms. This paper proposes the first study to analyze the use of a wide range of psychiatric terms in tweets in French.

OBJECTIVE

Our aim is to study how generic, nosographic and therapeutic psychiatric terms are used on Twitter in French. More specifically, our study has three complementary goals: (1) to analyze the types of psychiatric word use namely medical, misuse, irrelevant, (2) to analyze the polarity conveyed in the tweets that use these terms (positive/negative/neural), and (3) to compare the frequency of these terms to those observed in related work (mainly in English ).

METHODS

Our study has been conducted on a corpus of tweets in French posted between 01/01/2016 to 12/31/2018 and collected using dedicated keywords. The corpus has been manually annotated by clinical psychiatrists following a multilayer annotation scheme that includes the type of word use and the opinion orientation of the tweet. Two analysis have been performed. First a qualitative analysis to measure the reliability of the produced manual annotation, then a quantitative analysis considering mainly term frequency in each layer and exploring the interactions between them.

RESULTS

One of the first result is a resource as an annotated dataset . The initial dataset is composed of 22,579 tweets in French containing at least one of the selected psychiatric terms. From this set, experts in psychiatry randomly annotated 3,040 tweets that corresponds to the resource resulting from our work. The second result is the analysis of the annotations; it shows that terms are misused in 45.3% of the tweets and that their associated polarity is negative in 86.2% of the cases. When considering the three types of term use, 59.5% of the tweets are associated to a negative polarity. Misused terms related to psychotic disorders (55.5%) are more frequent to those related to mood disorders (26.5%).

CONCLUSIONS

Some psychiatric terms are misused in the corpora we studied; which is consistent with the results reported in related work in other languages. Thanks to the great diversity of studied terms, this work highlighted a disparity in the representations and ways of using psychiatric terms. Moreover, our study is important to help psychiatrists to be aware of the term use in new communication media such as social networks which are widely used. This study has the huge advantage to be reproducible thanks to the framework and guidelines we produced; so that the study could be renewed in order to analyze the evolution of term usage. While the newly build dataset is a valuable resource for other analytical studies, it could also serve to train machine learning algorithms to automatically identify stigma in social media.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3