BACKGROUND
Pediatric surgery is associated with a risk of postoperative pain that can impact the family’s quality of life. Although some risk factors for postoperative pain are known, these are often not consistently communicated to families. In addition, although tools for risk communication exist in other domains, none are tailored to pediatric surgery.
OBJECTIVE
As part of a larger project to develop pain risk prediction tools, we aimed to design an easy-to-use tool to effectively communicate a child’s risk of postoperative pain to both clinicians and family members.
METHODS
With research ethics board approval, we conducted virtual focus groups (~1 hour each) comprising clinicians and family members (people with lived surgical experience and parents of children who had recently undergone surgery/medical procedures) at a tertiary pediatric hospital to understand and evaluate potential design approaches and strategies for effectively communicating and visualizing postoperative pain risk. Data were analyzed thematically to generate design requirements and to inform iterative prototype development.
RESULTS
In total, 19 participants (clinicians: n=10, 53%; family members: n=9, 47%) attended 6 focus group sessions. Participants indicated that risk was typically communicated verbally by clinicians to patients and their families, with severity indicated using a descriptive or a numerical representation or both, which would only occasionally be contextualized. Participants indicated that risk communication tools were seldom used but that families would benefit from risk information, time to reflect on the information, and follow-up with questions. In addition, 9 key design requirements and feature considerations for effective risk communication were identified: (1) present risk information clearly and with contextualization, (2) quantify the risk and contextualize it, (3) include checklists for preoperative family preparation, (4) provide risk information digitally to facilitate recall and sharing, (5) query the family’s understanding to ensure comprehension of risk, (6) present the risk score using multimodal formats, (7) use color coding that is nonthreatening and avoids limitations with color blindness, (8) present the most significant factors contributing to the risk prediction, and (9) provide risk mitigation strategies to potentially decrease the patient’s level of risk.
CONCLUSIONS
Key design requirements for a pediatric postoperative pain risk visualization tool were established and guided the development of an initial prototype. Implementing a risk communication tool into clinical practice has the potential to bridge existing gaps in the accessibility, utilization, and comprehension of personalized risk information between health care professionals and family members. Future iterative codesign and clinical evaluation of this risk communication tool are needed to confirm its utility in practice.