Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review (Preprint)

Author:

Mavragani AmaryllisORCID,Ochoa GabrielaORCID,Tsagarakis Konstantinos PORCID

Abstract

BACKGROUND

In the era of information overload, are big data analytics the answer to access and better manage available knowledge? Over the last decade, the use of Web-based data in public health issues, that is, infodemiology, has been proven useful in assessing various aspects of human behavior. Google Trends is the most popular tool to gather such information, and it has been used in several topics up to this point, with health and medicine being the most focused subject. Web-based behavior is monitored and analyzed in order to examine actual human behavior so as to predict, better assess, and even prevent health-related issues that constantly arise in everyday life.

OBJECTIVE

This systematic review aimed at reporting and further presenting and analyzing the methods, tools, and statistical approaches for Google Trends (infodemiology) studies in health-related topics from 2006 to 2016 to provide an overview of the usefulness of said tool and be a point of reference for future research on the subject.

METHODS

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for selecting studies, we searched for the term “Google Trends” in the Scopus and PubMed databases from 2006 to 2016, applying specific criteria for types of publications and topics. A total of 109 published papers were extracted, excluding duplicates and those that did not fall inside the topics of health and medicine or the selected article types. We then further categorized the published papers according to their methodological approach, namely, visualization, seasonality, correlations, forecasting, and modeling.

RESULTS

All the examined papers comprised, by definition, time series analysis, and all but two included data visualization. A total of 23.1% (24/104) studies used Google Trends data for examining seasonality, while 39.4% (41/104) and 32.7% (34/104) of the studies used correlations and modeling, respectively. Only 8.7% (9/104) of the studies used Google Trends data for predictions and forecasting in health-related topics; therefore, it is evident that a gap exists in forecasting using Google Trends data.

CONCLUSIONS

The monitoring of online queries can provide insight into human behavior, as this field is significantly and continuously growing and will be proven more than valuable in the future for assessing behavioral changes and providing ground for research using data that could not have been accessed otherwise.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of Streaming Clustering Algorithms in Machine Learning on Big Data Architecture;Information and Communication Technology for Competitive Strategies (ICTCS 2021);2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3