Accuracy of the Apple Watch Series 4 and Fitbit Versa for Assessing Energy Expenditure and Heart Rate of Wheelchair Users During Treadmill Wheelchair Propulsion: Cross-sectional Study (Preprint)

Author:

Danielsson Marius LyngORCID,Vergeer MelanieORCID,Plasqui GuyORCID,Baumgart Julia KathrinORCID

Abstract

BACKGROUND

The Apple Watch (AW) Series 1 provides energy expenditure (EE) for wheelchair users but was found to be inaccurate with an error of approximately 30%, and the corresponding error for heart rate (HR) provided by the Fitbit Charge 2 was approximately 10% to 20%. Improved accuracy of estimated EE and HR is expected with newer editions of these smart watches (SWs).

OBJECTIVE

This study aims to assess the accuracy of the AW Series 4 (wheelchair-specific setting) and the Fitbit Versa (treadmill running mode) for estimating EE and HR during wheelchair propulsion at different intensities.

METHODS

Data from 20 manual wheelchair users (male: n=11, female: n=9; body mass: mean 75, SD 19 kg) and 20 people without a disability (male: n=11, female: n=9; body mass: mean 75, SD 11 kg) were included. Three 4-minute wheelchair propulsion stages at increasing speed were performed on 3 separate test days (0.5%, 2.5%, or 5% incline), while EE and HR were collected by criterion devices and the AW or Fitbit. The mean absolute percentage error (MAPE) was used to indicate the absolute agreement between the criterion device and SWs for EE and HR. Additionally, linear mixed model analyses assessed the effect of exercise intensity, sex, and group on the SW error. Interclass correlation coefficients were used to assess relative agreement between criterion devices and SWs.

RESULTS

The AW underestimated EE with MAPEs of 29.2% (SD 22%) in wheelchair users and 30% (SD 12%) in people without a disability. The Fitbit overestimated EE with MAPEs of 73.9% (SD 7%) in wheelchair users and 44.7% (SD 38%) in people without a disability. Both SWs underestimated HR. The device error for EE and HR increased with intensity for both SWs (all comparisons: <i>P</i><.001), and the only significant difference between groups was found for HR in the AW (–5.27 beats/min for wheelchair users; <i>P</i>=.02). There was a significant effect of sex on the estimation error in EE, with worse accuracy for the AW (–0.69 kcal/min; <i>P</i><.001) and better accuracy for the Fitbit (–2.08 kcal/min; <i>P</i><.001) in female participants. For HR, sex differences were found only for the AW, with a smaller error in female participants (5.23 beats/min; <i>P</i>=.02). Interclass correlation coefficients showed poor to moderate relative agreement for both SWs apart from 2 stage-incline combinations (AW: 0.12-0.57 for EE and 0.11-0.86 for HR; Fitbit: 0.06-0.85 for EE and 0.03-0.29 for HR).

CONCLUSIONS

Neither the AW nor Fitbit were sufficiently accurate for estimating EE or HR during wheelchair propulsion. The AW underestimated EE and the Fitbit overestimated EE, and both SWs underestimated HR. Caution is hence required when using SWs as a tool for training intensity regulation and energy balance or imbalance in wheelchair users.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3