Early Detection of Adverse Drug Reactions in Social Health Networks: A Natural Language Processing Pipeline for Signal Detection (Preprint)

Author:

Nikfarjam AzadehORCID,Ransohoff Julia DORCID,Callahan AlisonORCID,Jones ErikORCID,Loew BrianORCID,Kwong Bernice YORCID,Sarin Kavita YORCID,Shah Nigam HORCID

Abstract

BACKGROUND

Adverse drug reactions (ADRs) occur in nearly all patients on chemotherapy, causing morbidity and therapy disruptions. Detection of such ADRs is limited in clinical trials, which are underpowered to detect rare events. Early recognition of ADRs in the postmarketing phase could substantially reduce morbidity and decrease societal costs. Internet community health forums provide a mechanism for individuals to discuss real-time health concerns and can enable computational detection of ADRs.

OBJECTIVE

The goal of this study is to identify cutaneous ADR signals in social health networks and compare the frequency and timing of these ADRs to clinical reports in the literature.

METHODS

We present a natural language processing-based, ADR signal-generation pipeline based on patient posts on Internet social health networks. We identified user posts from the Inspire health forums related to two chemotherapy classes: erlotinib, an epidermal growth factor receptor inhibitor, and nivolumab and pembrolizumab, immune checkpoint inhibitors. We extracted mentions of ADRs from unstructured content of patient posts. We then performed population-level association analyses and time-to-detection analyses.

RESULTS

Our system detected cutaneous ADRs from patient reports with high precision (0.90) and at frequencies comparable to those documented in the literature but an average of 7 months ahead of their literature reporting. Known ADRs were associated with higher proportional reporting ratios compared to negative controls, demonstrating the robustness of our analyses. Our named entity recognition system achieved a 0.738 microaveraged F-measure in detecting ADR entities, not limited to cutaneous ADRs, in health forum posts. Additionally, we discovered the novel ADR of hypohidrosis reported by 23 patients in erlotinib-related posts; this ADR was absent from 15 years of literature on this medication and we recently reported the finding in a clinical oncology journal.

CONCLUSIONS

Several hundred million patients report health concerns in social health networks, yet this information is markedly underutilized for pharmacosurveillance. We demonstrated the ability of a natural language processing-based signal-generation pipeline to accurately detect patient reports of ADRs months in advance of literature reporting and the robustness of statistical analyses to validate system detections. Our findings suggest the important contributions that social health network data can play in contributing to more comprehensive and timely pharmacovigilance.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3