Fast Healthcare Interoperability Resources–Based Support System for Predicting Delivery Type: Model Development and Evaluation Study (Preprint)

Author:

Coutinho-Almeida JoãoORCID,Cardoso AlexandrinaORCID,Cruz-Correia RicardoORCID,Pereira-Rodrigues PedroORCID

Abstract

BACKGROUND

The escalating prevalence of cesarean delivery globally poses significant health impacts on mothers and newborns. Despite this trend, the underlying reasons for increased cesarean delivery rates, which have risen to 36.3% in Portugal as of 2020, remain unclear. This study delves into these issues within the Portuguese health care context, where national efforts are underway to reduce cesarean delivery occurrences.

OBJECTIVE

This paper aims to introduce a machine learning, algorithm-based support system designed to assist clinical teams in identifying potentially unnecessary cesarean deliveries. Key objectives include developing clinical decision support systems for cesarean deliveries using interoperability standards, identifying predictive factors influencing delivery type, assessing the economic impact of implementing this tool, and comparing system outputs with clinicians’ decisions.

METHODS

This study used retrospective data collected from 9 public Portuguese hospitals, encompassing maternal and fetal data and delivery methods from 2019 to 2020. We used various machine learning algorithms for model development, with light gradient-boosting machine (LightGBM) selected for deployment due to its efficiency. The model’s performance was compared with clinician assessments through questionnaires. Additionally, an economic simulation was conducted to evaluate the financial impact on Portuguese public hospitals.

RESULTS

The deployed model, based on LightGBM, achieved an area under the receiver operating characteristic curve of 88%. In the trial deployment phase at a single hospital, 3.8% (123/3231) of cases triggered alarms for potentially unnecessary cesarean deliveries. Financial simulation results indicated potential benefits for 30% (15/48) of Portuguese public hospitals with the implementation of our tool. However, this study acknowledges biases in the model, such as combining different vaginal delivery types and focusing on potentially unwarranted cesarean deliveries.

CONCLUSIONS

This study presents a promising system capable of identifying potentially incorrect cesarean delivery decisions, with potentially positive implications for medical practice and health care economics. However, it also highlights the challenges and considerations necessary for real-world application, including further evaluation of clinical decision-making impacts and understanding the diverse reasons behind delivery type choices. This study underscores the need for careful implementation and further robust analysis to realize the full potential and real-world applicability of such clinical support systems.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3