Texas Public Agencies’ Tweets and Public Engagement During the COVID-19 Pandemic: Natural Language Processing Approach (Preprint)

Author:

Tang LuORCID,Liu WenlinORCID,Thomas BenjaminORCID,Tran Hong Thoai NgaORCID,Zou WenxueORCID,Zhang XueyingORCID,Zhi DeguiORCID

Abstract

BACKGROUND

The ongoing COVID-19 pandemic is characterized by different morbidity and mortality rates across different states, cities, rural areas, and diverse neighborhoods. The absence of a national strategy for battling the pandemic also leaves state and local governments responsible for creating their own response strategies and policies.

OBJECTIVE

This study examines the content of COVID-19–related tweets posted by public health agencies in Texas and how content characteristics can predict the level of public engagement.

METHODS

All COVID-19–related tweets (N=7269) posted by Texas public agencies during the first 6 months of 2020 were classified in terms of each tweet’s functions (whether the tweet provides information, promotes action, or builds community), the preventative measures mentioned, and the health beliefs discussed, by using natural language processing. Hierarchical linear regressions were conducted to explore how tweet content predicted public engagement.

RESULTS

The information function was the most prominent function, followed by the action or community functions. Beliefs regarding susceptibility, severity, and benefits were the most frequently covered health beliefs. Tweets that served the information or action functions were more likely to be retweeted, while tweets that served the action and community functions were more likely to be liked. Tweets that provided susceptibility information resulted in the most public engagement in terms of the number of retweets and likes.

CONCLUSIONS

Public health agencies should continue to use Twitter to disseminate information, promote action, and build communities. They need to improve their strategies for designing social media messages about the benefits of disease prevention behaviors and audiences’ self-efficacy.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3