Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study (Preprint)

Author:

Cho Chul-HyunORCID,Lee TaekORCID,Kim Min-GwanORCID,In Hoh PeterORCID,Kim LeenORCID,Lee Heon-JeongORCID

Abstract

BACKGROUND

Virtually, all organisms on Earth have their own circadian rhythm, and humans are no exception. Circadian rhythms are associated with various human states, especially mood disorders, and disturbance of the circadian rhythm is known to be very closely related. Attempts have also been made to derive clinical implications associated with mood disorders using the vast amounts of digital log that is acquired by digital technologies develop and using computational analysis techniques.

OBJECTIVE

This study was conducted to evaluate the mood state or episode, activity, sleep, light exposure, and heart rate during a period of about 2 years by acquiring various digital log data through wearable devices and smartphone apps as well as conventional clinical assessments. We investigated a mood prediction algorithm developed with machine learning using passive data phenotypes based on circadian rhythms.

METHODS

We performed a prospective observational cohort study on 55 patients with mood disorders (major depressive disorder [MDD] and bipolar disorder type 1 [BD I] and 2 [BD II]) for 2 years. A smartphone app for self-recording daily mood scores and detecting light exposure (using the installed sensor) were provided. From daily worn activity trackers, digital log data of activity, sleep, and heart rate were collected. Passive digital phenotypes were processed into 130 features based on circadian rhythms, and a mood prediction algorithm was developed by random forest.

RESULTS

The mood state prediction accuracies for the next 3 days in all patients, MDD patients, BD I patients, and BD II patients were 65%, 65%, 64%, and 65% with 0.7, 0.69, 0.67, and 0.67 area under the curve (AUC) values, respectively. The accuracies of all patients for no episode (NE), depressive episode (DE), manic episode (ME), and hypomanic episode (HME) were 85.3%, 87%, 94%, and 91.2% with 0.87, 0.87, 0.958, and 0.912 AUC values, respectively. The prediction accuracy in BD II patients was distinctively balanced as high showing 82.6%, 74.4%, and 87.5% of accuracy (with generally good sensitivity and specificity) with 0.919, 0.868, and 0.949 AUC values for NE, DE, and HME, respectively.

CONCLUSIONS

On the basis of the theoretical basis of chronobiology, this study proposed a good model for future research by developing a mood prediction algorithm using machine learning by processing and reclassifying digital log data. In addition to academic value, it is expected that this study will be of practical help to improve the prognosis of patients with mood disorders by making it possible to apply actual clinical application owing to the rapid expansion of digital technology.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Support System for Habitual Journaling;Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3