Development and Validation of a Risk Prediction Model for Diabetic Retinopathy in Type 2 Diabetic Patients (Preprint)

Author:

Zhu ChengjunORCID,Zhu Jiaxi,Wang Lei,Xiong Shizheng,Zou Yijian,Huang Jing,Xie Huimin,Zhang Wenye,Wu Huiqun,Liu Yun

Abstract

BACKGROUND

Diabetes mellitus (DM) has become one of the most serious public health problems in the 21st century. chronic complications associated with type 2 DM (T2DM) increase the rate of disability, leading to untimely death and reduce the quality of life. In these complications, diabetic retinopathy (DR) is the most common one and could lead to secondary blindness. Despite retinal screening is first-of-choice for DR diagnosis, the limits of such screening equipments and experienced image readers restricted its applications, especially in those rural areas where DR risks even higher. Therefore, it’s essential to construct an easy-to-implement predictive model of the risk of DR in order to help predict individual morbidity and identify the risk factors of DR.

OBJECTIVE

Diabetic retinopathy (DR) has a high incidence rate in diabetic patients, the quality of life of whom will be seriously affected if not treated in time. This study aims to develop a risk prediction model for DR in type 2 diabetic patients.

METHODS

According to the retrieval strategy, inclusion and exclusion criteria, the relevant Meta analyses on DR risk factors were searched and evaluated. The pooled odds ratio (OR) or relative risk (RR) of each risk factor was obtained and calculated for β coefficients using logistic regression (LR) model. Besides, an electronic patient-reported outcome questionnaire was developed and 60 cases of DR and non-DR T2DM patients were investigated to validate the developed model. Receiver operating characteristic curve (ROC) was drawn to verify the prediction accuracy of the model.

RESULTS

After retrieving, eight Meta analysis with a total of 15654 cases and 12 risk factors associated with the onset of DR in T2DM, including weight loss surgery, myopia, lipid-lowing drugs, blood glucose control, course of T2DM, glycosylated hemo-globin, fasting blood glucose, hypertension, gender, insulin treatment, residence, and smoking were included for LR modeling. These factors, followed by the respective β coefficient was bariatric surgery(-0.942), myopia(-0.357), lipid-lowering drug follow-up <3y(-0.994), lipid-lowering drug follow-up >3y(-0.223), course of T2DM(0.174), glycated hemoglobin (0.372), fasting blood sugar(0.223), insulin therapy(0.688), rural residence(0.199), smoking(-0.083), hypertension(0.405), male(0.548), blood sugar control(-0.400) with constant term α = -0.949 in the constructed model. The area under receiver operating characteristic curve (AUC) of ROC curve of the model in the external validation was 0.912. An application was presented as an example of use.

CONCLUSIONS

In this study, the risk prediction model of DR was developed, which make individualized assessment for the susceptible DR population feasible and need to be further verified with large sample size application.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3