Current-Visit and Next-Visit Prediction for Fatty Liver Disease With a Large-Scale Dataset: Model Development and Performance Comparison (Preprint)

Author:

Wu Cheng-TseORCID,Chu Ta-WeiORCID,Jang Jyh-Shing RogerORCID

Abstract

BACKGROUND

Fatty liver disease (FLD) arises from the accumulation of fat in the liver and may cause liver inflammation, which, if not well controlled, may develop into liver fibrosis, cirrhosis, or even hepatocellular carcinoma.

OBJECTIVE

We describe the construction of machine-learning models for current-visit prediction (CVP), which can help physicians obtain more information for accurate diagnosis, and next-visit prediction (NVP), which can help physicians provide potential high-risk patients with advice to effectively prevent FLD.

METHODS

The large-scale and high-dimensional dataset used in this study comes from Taipei MJ Health Research Foundation in Taiwan. We used one-pass ranking and sequential forward selection (SFS) for feature selection in FLD prediction. For CVP, we explored multiple models, including k-nearest-neighbor classifier (KNNC), Adaboost, support vector machine (SVM), logistic regression (LR), random forest (RF), Gaussian naïve Bayes (GNB), decision trees C4.5 (C4.5), and classification and regression trees (CART). For NVP, we used long short-term memory (LSTM) and several of its variants as sequence classifiers that use various input sets for prediction. Model performance was evaluated based on two criteria: the accuracy of the test set and the intersection over union/coverage between the features selected by one-pass ranking/SFS and by domain experts. The accuracy, precision, recall, F-measure, and area under the receiver operating characteristic curve were calculated for both CVP and NVP for males and females, respectively.

RESULTS

After data cleaning, the dataset included 34,856 and 31,394 unique visits respectively for males and females for the period 2009-2016. The test accuracy of CVP using KNNC, Adaboost, SVM, LR, RF, GNB, C4.5, and CART was respectively 84.28%, 83.84%, 82.22%, 82.21%, 76.03%, 75.78%, and 75.53%. The test accuracy of NVP using LSTM, bidirectional LSTM (biLSTM), Stack-LSTM, Stack-biLSTM, and Attention-LSTM was respectively 76.54%, 76.66%, 77.23%, 76.84%, and 77.31% for fixed-interval features, and was 79.29%, 79.12%, 79.32%, 79.29%, and 78.36%, respectively, for variable-interval features.

CONCLUSIONS

This study explored a large-scale FLD dataset with high dimensionality. We developed FLD prediction models for CVP and NVP. We also implemented efficient feature selection schemes for current- and next-visit prediction to compare the automatically selected features with expert-selected features. In particular, NVP emerged as more valuable from the viewpoint of preventive medicine. For NVP, we propose use of feature set 2 (with variable intervals), which is more compact and flexible. We have also tested several variants of LSTM in combination with two feature sets to identify the best match for male and female FLD prediction. More specifically, the best model for males was Stack-LSTM using feature set 2 (with 79.32% accuracy), whereas the best model for females was LSTM using feature set 1 (with 81.90% accuracy).

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3