A Deep Learning Framework for Predicting Patient Decannulation on Extracorporeal Membrane Oxygenation Devices: Development and Model Analysis Study (Preprint)

Author:

Fuller JoshuaORCID,Abramov AlexeyORCID,Mullin DanaORCID,Beck JamesORCID,Lemaitre PhilippeORCID,Azizi ElhamORCID

Abstract

BACKGROUND

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a therapy for patients with refractory respiratory failure. The decision to decannulate someone from extracorporeal membrane oxygenation (ECMO) often involves weaning trials and clinical intuition. To date, there are limited prognostication metrics to guide clinical decision–making to determine which patients will be successfully weaned and decannulated.

OBJECTIVE

This study aims to assist clinicians with the decision to decannulate a patient from ECMO, using Continuous Evaluation of VV-ECMO Outcomes (CEVVO), a deep learning–based model for predicting success of decannulation in patients supported on VV-ECMO. The running metric may be applied daily to categorize patients into high-risk and low-risk groups. Using these data, providers may consider initiating a weaning trial based on their expertise and CEVVO.

METHODS

Data were collected from 118 patients supported with VV-ECMO at the Columbia University Irving Medical Center. Using a long short-term memory–based network, CEVVO is the first model capable of integrating discrete clinical information with continuous data collected from an ECMO device. A total of 12 sets of 5-fold cross validations were conducted to assess the performance, which was measured using the area under the receiver operating characteristic curve (AUROC) and average precision (AP). To translate the predicted values into a clinically useful metric, the model results were calibrated and stratified into risk groups, ranging from 0 (high risk) to 3 (low risk). To further investigate the performance edge of CEVVO, 2 synthetic data sets were generated using Gaussian process regression. The first data set preserved the long-term dependency of the patient data set, whereas the second did not.

RESULTS

CEVVO demonstrated consistently superior classification performance compared with contemporary models (<i>P</i>&lt;.001 and <i>P</i>=.04 compared with the next highest AUROC and AP). Although the model’s patient-by-patient predictive power may be too low to be integrated into a clinical setting (AUROC 95% CI 0.6822-0.7055; AP 95% CI 0.8515-0.8682), the patient risk classification system displayed greater potential. When measured at 72 hours, the high-risk group had a successful decannulation rate of 58% (7/12), whereas the low-risk group had a successful decannulation rate of 92% (11/12; <i>P</i>=.04). When measured at 96 hours, the high- and low-risk groups had a successful decannulation rate of 54% (6/11) and 100% (9/9), respectively (<i>P</i>=.01). We hypothesized that the improved performance of CEVVO was owing to its ability to efficiently capture transient temporal patterns. Indeed, CEVVO exhibited improved performance on synthetic data with inherent temporal dependencies (<i>P</i>&lt;.001) compared with logistic regression and a dense neural network.

CONCLUSIONS

The ability to interpret and integrate large data sets is paramount for creating accurate models capable of assisting clinicians in risk stratifying patients supported on VV-ECMO. Our framework may guide future incorporation of CEVVO into more comprehensive intensive care monitoring systems.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3