Uncovering Harmonization Potential in Health Care Data Through Iterative Refinement of Fast Healthcare Interoperability Resources Profiles Based on Retrospective Discrepancy Analysis: Case Study (Preprint)

Author:

Rosenau LorenzORCID,Behrend PaulORCID,Wiedekopf JoshuaORCID,Gruendner JulianORCID,Ingenerf JosefORCID

Abstract

BACKGROUND

Cross-institutional interoperability between health care providers remains a recurring challenge worldwide. The German Medical Informatics Initiative, a collaboration of 37 university hospitals in Germany, aims to enable interoperability between partner sites by defining Fast Healthcare Interoperability Resources (FHIR) profiles for the cross-institutional exchange of health care data, the Core Data Set (CDS). The current CDS and its extension modules define elements representing patients’ health care records. All university hospitals in Germany have made significant progress in providing routine data in a standardized format based on the CDS. In addition, the central research platform for health, the German Portal for Medical Research Data feasibility tool, allows medical researchers to query the available CDS data items across many participating hospitals.

OBJECTIVE

In this study, we aimed to evaluate a novel approach of combining the current top-down generated FHIR profiles with the bottom-up generated knowledge gained by the analysis of respective instance data. This allowed us to derive options for iteratively refining FHIR profiles using the information obtained from a discrepancy analysis.

METHODS

We developed an FHIR validation pipeline and opted to derive more restrictive profiles from the original CDS profiles. This decision was driven by the need to align more closely with the specific assumptions and requirements of the central feasibility platform’s search ontology. While the original CDS profiles offer a generic framework adaptable for a broad spectrum of medical informatics use cases, they lack the specificity to model the nuanced criteria essential for medical researchers. A key example of this is the necessity to represent specific laboratory codings and values interdependencies accurately. The validation results allow us to identify discrepancies between the instance data at the clinical sites and the profiles specified by the feasibility platform and addressed in the future.

RESULTS

A total of 20 university hospitals participated in this study. Historical factors, lack of harmonization, a wide range of source systems, and case sensitivity of coding are some of the causes for the discrepancies identified. While in our case study, Conditions, Procedures, and Medications have a high degree of uniformity in the coding of instance data due to legislative requirements for billing in Germany, we found that laboratory values pose a significant data harmonization challenge due to their interdependency between coding and value.

CONCLUSIONS

While the CDS achieves interoperability, different challenges for federated data access arise, requiring more specificity in the profiles to make assumptions on the instance data. We further argue that further harmonization of the instance data can significantly lower required retrospective harmonization efforts. We recognize that discrepancies cannot be resolved solely at the clinical site; therefore, our findings have a wide range of implications and will require action on multiple levels and by various stakeholders.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3