Effectiveness of an Emergency Department–Based Machine Learning Clinical Decision Support Tool to Prevent Outpatient Falls Among Older Adults: Protocol for a Quasi-Experimental Study (Preprint)

Author:

Hekman Daniel JORCID,Cochran Amy LORCID,Maru Apoorva PORCID,Barton Hanna JORCID,Shah Manish NORCID,Wiegmann DouglasORCID,Smith Maureen AORCID,Liao FrankORCID,Patterson Brian WORCID

Abstract

BACKGROUND

Emergency department (ED) providers are important collaborators in preventing falls for older adults because they are often the first health care providers to see a patient after a fall and because at-home falls are often preceded by previous ED visits. Previous work has shown that ED referrals to falls interventions can reduce the risk of an at-home fall by 38%. Screening patients at risk for a fall can be time-consuming and difficult to implement in the ED setting. Machine learning (ML) and clinical decision support (CDS) offer the potential of automating the screening process. However, it remains unclear whether automation of screening and referrals can reduce the risk of future falls among older patients.

OBJECTIVE

The goal of this paper is to describe a research protocol for evaluating the effectiveness of an automated screening and referral intervention. These findings will inform ongoing discussions about the use of ML and artificial intelligence to augment medical decision-making.

METHODS

To assess the effectiveness of our program for patients receiving the falls risk intervention, our primary analysis will be to obtain referral completion rates at 3 different EDs. We will use a quasi-experimental design known as a sharp regression discontinuity with regard to intent-to-treat, since the intervention is administered to patients whose risk score falls above a threshold. A conditional logistic regression model will be built to describe 6-month fall risk at each site as a function of the intervention, patient demographics, and risk score. The odds ratio of a return visit for a fall and the 95% CI will be estimated by comparing those identified as high risk by the ML-based CDS (ML-CDS) and those who were not but had a similar risk profile.

RESULTS

The ML-CDS tool under study has been implemented at 2 of the 3 EDs in our study. As of April 2023, a total of 1326 patient encounters have been flagged for providers, and 339 unique patients have been referred to the mobility and falls clinic. To date, 15% (45/339) of patients have scheduled an appointment with the clinic.

CONCLUSIONS

This study seeks to quantify the impact of an ML-CDS intervention on patient behavior and outcomes. Our end-to-end data set allows for a more meaningful analysis of patient outcomes than other studies focused on interim outcomes, and our multisite implementation plan will demonstrate applicability to a broad population and the possibility to adapt the intervention to other EDs and achieve similar results. Our statistical methodology, regression discontinuity design, allows for causal inference from observational data and a staggered implementation strategy allows for the identification of secular trends that could affect causal associations and allow mitigation as necessary.

CLINICALTRIAL

ClinicalTrials.gov NCT05810064; https://www.clinicaltrials.gov/study/NCT05810064

INTERNATIONAL REGISTERED REPORT

DERR1-10.2196/48128

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3