The Alzheimer's Knowledge Base - A knowledge graph for therapeutic discovery in Alzheimer's Disease research (Preprint)

Author:

Romano Joseph DORCID,Truong Van,Kumar Rachit,Venkatesan Mythreye,Graham Britney E.,Hao Yun,Matsumoto Nick,Li Xi,Wang ZhipingORCID,Ritchie MarylynORCID,Shen LiORCID,Moore Jason H.ORCID

Abstract

BACKGROUND

As global populations age and become susceptible to neurodegenerative illnesses, new therapies for Alzheimer’s Disease (AD) are urgently needed. Existing data resources for drug discovery and repurposing fail to capture heterogeneous biomedical knowledge that is central to the disease’s etiology and response to drugs. We designed the Alzheimer’s Knowledge Base (AlzKB) to alleviate this need by providing a comprehensive knowledge representation of AD etiology and candidate therapeutics.

OBJECTIVE

We designed the Alzheimer’s Knowledge Base (AlzKB) to alleviate this need by providing a comprehensive knowledge representation of AD etiology and candidate therapeutics.

METHODS

We designed AlzKB as a large, heterogeneous graph knowledge base assembled using 22 diverse external data sources describing biological and pharmaceutical entities at different levels of organization (chemicals, genes, anatomy, diseases, etc.). AlzKB uses an OWL 2 ontology to enforce semantic consistency and allow for ontological inference. We provide a public version of AlzKB and allow users to run and modify local versions of the knowledge base.

RESULTS

AlzKB is freely available at http://alzkb.ai, and currently contains 118,902 entities with 1,309,527 relationships between those entities. To demonstrate its value, we use graph data science and machine learning to (a.) propose new therapeutic targets based on similarities of AD to Parkinson Disease and (b.) repurpose existing drugs that may treat AD. For each use case, AlzKB recovers known therapeutic associations while proposing biologically plausible new ones.

CONCLUSIONS

AlzKB is a new, publicly available knowledge resource that enables researchers to discover complex translational associations for AD drug discovery. Through two use-cases, we show that it is a valuable tool for proposing novel therapeutic hypotheses based on public biomedical knowledge.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3