Cabernet: A Question-and-Answer System to Extract Data from Free-Text Pathology Reports (Preprint)

Author:

Mitchell Joseph RossORCID,Szepietowski Phillip,Howard Rachel,Reisman Phillip,Jones Jennie D.,Lewis Patricia,Fridley Brooke L.,Rollison Dana E.ORCID

Abstract

BACKGROUND

Information in pathology reports is critical for cancer care. Natural language processing (NLP) systems to extract information from pathology reports are often narrow in scope or require extensive tuning. Consequently, there is growing interest in automated deep learning approaches. A powerful new NLP algorithm, Bidirectional Encoder Representations from Transformers (BERT), was published in late 2018. BERT set new performance standards on tasks as diverse as question-answering, named entity recognition, speech recognition, and more.

OBJECTIVE

to develop a BERT-based system to automatically extract detailed tumor site and histology information from free text pathology reports.

METHODS

We pursued three specific aims: 1) extract accurate tumor site and histology descriptions from free-text pathology reports; 2) accommodate the diverse terminology used to indicate the same pathology; and 3) provide accurate standardized tumor site and histology codes for use by downstream applications. We first trained a base language-model to comprehend the technical language in pathology reports. This involved unsupervised learning on a training corpus of 275,605 electronic pathology reports from 164,531 unique patients that included 121 million words. Next, we trained a Q&A “head” that would connect to, and work with, the pathology language model to answer pathology questions. Our Q&A system was designed to search for the answers to two predefined questions in each pathology report: 1) “What organ contains the tumor?”; and, 2) “What is the kind of tumor or carcinoma?”. This involved supervised training on 8,197 pathology reports, each with ground truth answers to these two questions determined by Certified Tumor Registrars. The dataset included 214 tumor sites and 193 histologies. The tumor site and histology phrases extracted by the Q&A model were used to predict ICD-O-3 site and histology codes. This involved fine-tuning two additional BERT models: one to predict site codes, and the second to predict histology codes. Our final system includes a network of 3 BERT-based models. We call this caBERTnet (pronounced “Cabernet”). We evaluated caBERnet using a sequestered test dataset of 2,050 pathology reports with ground truth answers determined by Certified Tumor Registrars.

RESULTS

caBERTnet’s accuracies for predicting group-level site and histology codes were 93.5% and 97.7%, respectively. The top-5 accuracies for predicting fine-grained ICD-O-3 site and histology codes with 5 or more samples each in the training dataset were 93.6% and 95.4%, respectively.

CONCLUSIONS

This is the first time an NLP system has achieved expert-level performance predicting ICD-O-3 codes across a broad range of tumor sites and histologies. Our new system could help reduce treatment delays, increase enrollment in clinical trials of new therapies, and improve patient outcomes.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3