A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation (Preprint)

Author:

Stojanov RisteORCID,Popovski GorjanORCID,Cenikj GjorgjinaORCID,Koroušić Seljak BarbaraORCID,Eftimov TomeORCID

Abstract

BACKGROUND

Recently, food science has been garnering a lot of attention. There are many open research questions on food interactions, as one of the main environmental factors, with other health-related entities such as diseases, treatments, and drugs. In the last 2 decades, a large amount of work has been done in natural language processing and machine learning to enable biomedical information extraction. However, machine learning in food science domains remains inadequately resourced, which brings to attention the problem of developing methods for food information extraction. There are only few food semantic resources and few rule-based methods for food information extraction, which often depend on some external resources. However, an annotated corpus with food entities along with their normalization was published in 2019 by using several food semantic resources.

OBJECTIVE

In this study, we investigated how the recently published bidirectional encoder representations from transformers (BERT) model, which provides state-of-the-art results in information extraction, can be fine-tuned for food information extraction.

METHODS

We introduce FoodNER, which is a collection of corpus-based food named-entity recognition methods. It consists of 15 different models obtained by fine-tuning 3 pretrained BERT models on 5 groups of semantic resources: food versus nonfood entity, 2 subsets of Hansard food semantic tags, FoodOn semantic tags, and Systematized Nomenclature of Medicine Clinical Terms food semantic tags.

RESULTS

All BERT models provided very promising results with 93.30% to 94.31% macro F1 scores in the task of distinguishing food versus nonfood entity, which represents the new state-of-the-art technology in food information extraction. Considering the tasks where semantic tags are predicted, all BERT models obtained very promising results once again, with their macro F1 scores ranging from 73.39% to 78.96%.

CONCLUSIONS

FoodNER can be used to extract and annotate food entities in 5 different tasks: food versus nonfood entities and distinguishing food entities on the level of food groups by using the closest Hansard semantic tags, the parent Hansard semantic tags, the FoodOn semantic tags, or the Systematized Nomenclature of Medicine Clinical Terms semantic tags.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3